\qquad
\qquad

1. Two objects are dropped downward at the same time from the top of a building. For both functions, t represents time in seconds and the height is represented in feet. The functions are shown below. Function $\mathrm{g}(\mathrm{t})$ is shown as a graph and function $\mathrm{s}(\mathrm{t})$ is shown as a table. Use these to answer the following questions:
a) Which object was dropped from a greater height? Explain your answer.
b) Which object hit the ground first? Explain your answer.
c) Which object fell at a faster rate (in $\mathrm{ft} / \mathrm{sec})$? Explain your answer.

t	$s(t)$
0	20
2.5	15
3.5	10
4.3	5
5	0

2. Given the functions $f(x)$ and $g(x)$, which function has the greatest average rate of change over the interval $[-1,1]$? Show and explain your work.

$$
f(x)=3 x^{3}-2 x^{2}+4
$$

x	$\mathrm{g}(\mathrm{x})$
-2	1.25
-1	2.5
0	5
1	10
2	20

3. Which of the following functions has a minimum value less than the one shown in the graph?
a) $m(x)=x^{2}-2 x-10$
b) $g(x)=x^{2}-6 x+7$
c) $\quad h(x)=|x+3|-6$
d) $\quad r(x)=|x-8|+2$

4. Which of the following statements is true about the functions $f(x)$ and $g(x)$ shown below?

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	5
0	3
1	1
2	-1

a) $G(x)$ has a greater rate of change than $f(x)$.
b) $F(x)$ has a greater rate of change than $g(x)$.
c) Both functions have the same rate of change.
d) There is insufficient information to determine the rate of change.

Honors Only:
5. Which of the following statements is true about the functions $p(x)$ and $m(x)$ shown below?

x	-3	-2	-1	0	1	2	3	4	5
$m(x)$	-7	0	5	8	9	8	5	0	-7

$$
p(x)=-x^{2}-x+6
$$

a) The function $\mathrm{p}(\mathrm{x})$ has a greater maximum value than $\mathrm{m}(\mathrm{x})$.
b) The sum of the roots of $m(x)=0$ is greater than the sum of the roots of $p(x)=0$.
c) The y-intercept of $p(x)$ is greater than the y-intercept of $m(x)$.
d) Over the interval $[-1,1]$, the average rate of change for $m(x)$ is less than the rate of change for $\mathrm{p}(\mathrm{x})$.

