\qquad

1) Match the piecewise functions to their graphs:

2) Fred's Fabulous Fitness Center charges $\$ 29.99$ for the first ten weeks of membership. After the first ten weeks, the center charges $\$ 10.00$ for every additional week. Write a piecewise function for this situation where w is the number of weeks and $c(w)$ is the amount charged.

$$
c(w)=\left\{\begin{array}{c}
29.99 ; 0<w \leq 10 \\
29.99+10(w-10) ; w>10
\end{array}\right.
$$

3) Solve the following absolute value equation by graphing: $|x-6|<3$

Write your solution as a compound inequality AND graph on a number line.

After putting $|x-6|$ into y_{1} and 3 into $y_{2} 1$
determined that the graphs intersect at $x=3$ and $x=9$.
The inequality is $|x-6|<3$; therefore, we must determine where
$|x-6|$ has smaller y-values than 3. This happens between $x=3$ and $x=9$. 1 can tell because the absolute value function is below the horizontal line between those two x-values.

In inequality form, this would be represented as:

$$
3<x<9
$$

This shows that the inequality is satisfied between 3 and 9 but not including those numbers.

On a number line, this would be represented as:

The circles on 3 and 9 would be left open because these x values are not included in the solution set.

Additional Problems:

1) On a movie subscription service, you can watch the first two movies for free, but then you get charged $\$ 5$ per movie watched after that. Write a piecewise function to represent the total money, d, that you would spend in dollars after watching, n, number of movies? (Assume that you can be charged a partial fee for watching a partial movie)

$$
d(n)=\left\{\begin{array}{lll}
\square & , & \square
\end{array}\right.
$$

2) Solve the following absolute value equation by graphing: $|x-3| \geq 6$. Write your solution using inequalities AND graph on a number line.

