Name _____

1) Match the piecewise functions to their graphs:

Function A = Graph 2	Function B = Graph $\underline{3}$	Function C = Graph $\underline{1}$
Function A must go with Graph 2 because Function A begins with a negative linear function $\left(-\frac{7}{3}x - \frac{8}{3}\right)$. You can tell it's negative by the -a value $\left(-\frac{7}{3}x\right)$. On the graph this will be a linear function that is going down. Looking at the graphs, 3 is eliminated because it starts with a positive linear function. $-\frac{7}{3}x - \frac{8}{3}$'s domain is $-5 \le x \le 1$; which means that function only exist from an x value of -5 to 1. Therefore, it must be graph 2 because graph 1's negative linear function's domain is from $-3 \le x \le$ -1.	Function B must go with Graph 3 because Function B begins with a positive linear function (2x). You can tell it's positive by the +a value. On the graph this will be a linear function going up. Graph 3 is the only graph that starts with a positive linear function.	Function C must go with Graph 1 because it's the only option left.
$f(x) = \begin{cases} -\frac{7}{3}x - \frac{8}{3}, & -5 \le x \le 1\\ -\frac{2}{3}x - \frac{13}{3}, & 1 \le x \le 4\\ \frac{5}{2}x - 17, & 4 \le x \le 6 \end{cases}$	$f(x) = \begin{cases} 2x, & -3 \le x \le -1\\ -2, & -1 \le x \le 2\\ -\frac{1}{2}x - 1, & 2 \le x \le 6 \end{cases}$ B	$f(x) = \begin{cases} -\frac{1}{3}x + 5, & -6 \le x \le -3\\ -2x, & -3 \le x \le 1\\ \frac{3}{4}x - \frac{11}{4}, & 1 \le x \le 5 \end{cases}$
	10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	3

2) Fred's Fabulous Fitness Center charges \$29.99 for the first ten weeks of membership. After the first ten weeks, the center charges \$10.00 for every additional week. Write a piecewise function for this situation where w is the number of weeks and c(w) is the amount charged.

$$c(w) = \begin{cases} 29.99; \ 0 < w \le 10\\ 29.99 + 10(w - 10); \ w > 10 \end{cases}$$

The first part of the piecewise function represents the first 10 weeks of membership; which is why the domain is $0 < w \le 10$. The price is only \$29.99 for the first ten weeks. After that, the price increases by \$10 for every week after 10 weeks. Since w represents the total number of weeks, you must subtract w from the 10 weeks you've already paid for so you're only getting charged \$10 for each additional week over 10 weeks; which is why the domain is w > 10.

3) Solve the following absolute value equation by graphing: |x - 6| < 3

Write your solution as a compound inequality **AND** graph on a number line.

Additional Problems:

1) On a movie subscription service, you can watch the first two movies for free, but then you get charged \$5 per movie watched after that. Write a piecewise function to represent the total money, *d*, that you would spend in dollars after watching, *n*, number of movies? (Assume that you can be charged a partial fee for watching a partial movie)

2) Solve the following absolute value equation by graphing: $|x - 3| \ge 6$. Write your solution using inequalities AND graph on a number line.

