\qquad
\qquad

1. a) Function Family:
b) Equation of Parent Function:
c) Vertical translation: \qquad units up or down
d) Horizontal translation: \qquad units left or right
e) Reflection over x-axis or y-axis?
f) Equation of Function: $f(x)=$
g) Domain:
h) Range:
i) End behavior:

As $x \rightarrow \infty, f(x) \rightarrow$
As $x \rightarrow-\infty, f(x) \rightarrow$

a) Function Family:
b) Equation of Parent Function: $f(x)=2\left(\frac{1}{4}\right)^{x}$
c) Vertical translation: \qquad units up or down
d) Horizontal translation: \qquad units left or right
e) Reflection over x-axis or y-axis?
f) Equation of Function: $f(x)=$
g) Domain:
h) Range:
i) End behavior:
3.
a) Function Family:
b) Equation of Parent Function:
c) Equation of Function: $f(x)=$
d) Domain:
e) Range:
f) End behavior:

4. \quad The parent function for the graph to the right is $f(x)=|x|$. Alter the equation of the parent function to represent any translation(s), reflection, stretch or compression.

5. Describe the transformation of $f(x)=\sqrt{x-3}$ from the parent function.
6. The Wertz car rental company charges $\$ 27$ to rent a crossover, plus $\$ 22$ per day. (Assume a partial day pays a partial fee.) What type of function could be used to represent the cost of renting the car, c, as a function of the number of days rented, d ?

Make a rough sketch of the graph of this situation. Be sure to label both axes.

7. A U.S. Marshal needs to travel 160 miles across state lines to retrieve an escaped convict. What type of function could be used to represent the time (t) in hours that it takes the Marshal to arrive as function of the speed (s in mph) at which he drives?

Make a rough sketch of the graph of this situation. Be sure to label both axes

8. The admission rates for an amusement park are as follows:

- Children 5 years old and under - FREE
- Children between 5 years and 12 years - $\$ 10$
- Children between 12 years and 18 years - $\$ 25$
- Adults (18 years and above) - \$35

Write a piecewise function that gives the admission price for a given age.
9. Write a piecewise function that describes the situation.

For a cellular data plan, $\$ 50$ per month buys 400 minutes. Additional time cost $\$ 0.30$ per minute. Let the monthly cost $C(x)$ be the function of the time x.
10. $\quad\left(x^{2}-1, \quad x \leq 0\right.$

For the following function, $f(x)=\left\{\begin{array}{cc}2 x-1, & 0<x \leq 5 \\ 3, & x>5\end{array}\right.$
Evaluate $f(-2)+f(0)-f(5)$.
11. Solve each inequality and graph it's solution on a number line.
a) $|7 x+4| \geq 74$
b) $\frac{|2+3 x|}{2} \geq 5$
c) $7\left|\frac{x}{3}\right|-9<12$
12. Match the following piecewise functions to their graphs.

$$
\text { Function } A=\text { Graph ___ Function } B=\text { Graph ___ Function } C=\text { Graph ___ }
$$

3

13.

Find the solution(s) to the following system: $\left\{\begin{array}{c}f(x)=x^{2}+3 x+2 \\ g(x)=2 x+3\end{array}\right.$
14. Let x represent one number and let y represent another number. Use the given conditions to write a system of nonlinear equations. Solve the system and find the numbers.

The sum of two numbers is 20 and their product is 96 .
15. A house that costs $\$ 200,000$ will appreciate in value by 3% each year.

Using the function, $f(x)=200,000(1.03)^{x}$, determine when the house will be worth $\$ 300,000$.

