Station One: Problem One Write the equation of the function resulting from shifting the parent of a square root (radical) function 2 units up and 5 units to the left.	Station One: Problem Two Write the equation of the function resulting from reflecting the parent of a quadratic function over the x-axis and shifting it 4 units to the right.
Station One: Problem Three Write an equation for a function resulting from shifting the parent of an exponential function 3 units to the right.	Station One: Problem Four Write an equation for a function resulting from shifting the parent of a rational function 1 units to the left and 6 units down.

Station Two: Problem One List the domain, range, and end behavior of the function.	Station Two: Problem Two List the domain, range, and end behavior of the function.
Station Two: Problem Three List the domain, range, and end behavior of the function.	Station Two: Problem Four List the domain, range, and end behavior of the function.

Station Three: Problem One Write a piecewise function for the graph below.	Station Three: Problem Two Write a piecewise function for the graph below.
Station Three: Problem Three Write a piecewise function for the graph below.	Station Three: Problem Four Write a piecewise function for the graph below.

Station Four: Problem One

Evaluate the piecewise function. Write all answers using function notation.

$$
f(x)=\left\{\begin{array}{cc}
3 x-5, & x>4 \\
x^{2}, & x \leq 4
\end{array}\right.
$$

a) $f(7)=$
b) $f(4)=$
c) $f(-3)=$

Station Four: Problem Three

Evaluate the piecewise function. Write all answers using function notation.

$$
p(x)=\left\{\begin{array}{cc}
-x^{2}-2 x, & x<-1 \\
x+2, & x \geq-1
\end{array}\right.
$$

a) $p(-3)=$
b) $p(0)=$
c) $p(-1)=$

Station Four: Problem Two

Evaluate the piecewise function. Write all answers using function notation.

$$
r(x)=\left\{\begin{array}{c}
-2|x+1|, \quad x \leq 1 \\
3, \quad 1<x<3 \\
6-2 x, \quad x \geq 3
\end{array}\right.
$$

a) $r(10)=$
b) $r(2)=$
c) $r(0)=$

Station Four: Problem Four

Evaluate the piecewise function. Write all answers using function notation.

$$
g(x)=\left\{\begin{array}{c}
-2 x-1, \quad x \leq 1 \\
-x^{2}+3 x-5, \quad x>1
\end{array}\right.
$$

a) $g(1)=$
b) $g(-2)=$
c) $g(0)=$

Station Five: Problem One Solve the absolute value inequality by graphing. Shade the solution on a number line. $\|x\|+5 \geq 11$	Station Five: Problem Two Solve the absolute value inequality by graphing. Shade the solution on a number line. $\|x\|-3>2$
Station Five: Problem Three Solve the absolute value inequality by graphing. Shade the solution on a number line. $\|5 x\| \leq 10$	Station Five: Problem Four Solve the absolute value inequality by graphing. Shade the solution on a number line. $\|x+5\|-6<-5$

Station Six: Problem One

Solve the absolute value inequality algebraically. (Show all work.) Shade the solution on a number line.

$$
7\left|\frac{n}{3}\right|-9<12
$$

Station Six: Problem Two

Solve the absolute value inequality algebraically. (Show all work.) Shade the solution on a number line.

$$
2|10 b+7|-1>73
$$

Station Six: Problem Four

Solve the absolute value inequality algebraically. (Show all work.) Shade the solution on a number line.

$$
9|1+8 n|-3 \geq 78
$$

