Station One: Problem One	Station One: Problem Two
Write the equation of the function resulting from shifting	Write the equation of the function resulting from
the parent of a square root (radical) function 2 units up	reflecting the parent of a quadratic function over the x-axis
and 5 units to the left.	and shifting it 4 units to the right.
Station One: Problem Three Write an equation for a function resulting from shifting the parent of an exponential function 3 units to the right.	Station One: Problem Four Write an equation for a function resulting from shifting the parent of a rational function 1 units to the left and 6 units down.

Station Four: Problem One	Station Four: Problem Two
Evaluate the piecewise function. Write all answers using function notation.	Evaluate the piecewise function. Write all answers using function notation.
$f(x) = \begin{cases} 3x - 5, & x > 4 \\ x^2, & x \le 4 \end{cases}$	$r(x) = \begin{cases} -2 x+1 , & x \le 1\\ 3, & 1 < x < 3\\ 6 - 2x, & x \ge 3 \end{cases}$
a) $f(7) =$ b) $f(4) =$ c) $f(-3) =$	a) $r(10) =$ b) $r(2) =$ c) $r(0) =$
Station Four: Problem Three	Station Four: Problem Four
Evaluate the piecewise function. Write all answers using function notation.	Evaluate the piecewise function. Write all answers using function notation.
$p(x) = \begin{cases} -x^2 - 2x, & x < -1 \\ x + 2, & x \ge -1 \end{cases}$	$g(x) = \begin{cases} -2x - 1, & x \le 1\\ -x^2 + 3x - 5, & x > 1 \end{cases}$
a) $p(-3) =$ b) $p(0) =$ c) $p(-1) =$	a) $g(1) =$ b) $g(-2) =$ c) $g(0) =$

Station Five: Problem One	Station Five: Problem Two
Solve the absolute value inequality by graphing.	Solve the absolute value inequality by graphing.
Shade the solution on a number line.	Shade the solution on a number line.
$ x + 5 \ge 11$	x - 3 > 2
Station Five: Problem Three	Station Five: Problem Four
Solve the absolute value inequality by graphing.	Solve the absolute value inequality by graphing.
Shade the solution on a number line.	Shade the solution on a number line.
$ 5x \le 10$	x + 5 - 6 < -5
Station Six: Problem One	Station Six: Problem Two
Solve the absolute value inequality algebraically.	Solve the absolute value inequality algebraically.
(Show all work.) Shade the solution on a number line.	(Show all work.) Shade the solution on a number line.
$7 \left \frac{n}{3}\right - 9 < 12$	2 10b + 7 - 1 > 73
Station Six: Problem Three	Station Six: Problem Four
Solve the absolute value inequality algebraically.	Solve the absolute value inequality algebraically.
(Show all work.) Shade the solution on a number line.	(Show all work.) Shade the solution on a number line.
$4 6-2a +8 \le 24$	$9 1 + 8n - 3 \ge 78$