Name:

1. Identify the parent function and explain how it has been shifted: Solutions are in

text boxes below.

2. Write an equation for a quadratic function that has been shifted 8 left and 5 down.

The form of a quadratic function that has been shifted to a vertex of (h, k) is $y = a(x - h)^2 + k$. If we shift a quadratic left 8 and down 5, its vertex becomes (-8, 5) and a possible equation is $y = (x + 8)^2 - 5$. Any other leading coefficient (a) would be acceptable, as well.

3. Write an equation for a sine function that has been shifted 2 right and 6 up.

The form of a sine function that has been shifted is $y = a \sin(x - h) + k$, where h represents a horizontal shift and k represents a vertical shift. If we shift a sine function right 2 and up 6, a possible equation is y = sin(x - 2) + 6. Any other leading coefficient (a) would be acceptable, as well.

Additional Practice on the back:

Show all of your work and explain your solutions.

Describe the transformations necessary to transform the graph of f(x) (solid line) into that of g(x) (dashed line).

Transform the given function f(x) as described and write the resulting function as an equation.

3) Use assignment A4: Shifty Behavior to write the general form for any parent function that has been shifted.

4) $f(x) = x^2$ stretched vertically by a factor of 4 and 5) $f(x) = \frac{1}{x}$ shifted left 3 units shifted down 3 units

6) f(x) = |x| shifted right 1 unit and up 3 units

7) $f(x) = \sqrt{x}$ reflected over the x-axis and shifted right 2 units and down 3 units