Name: _____

Jennifer's parents were offered four options for investing \$5000 to help Jennifer pay for college. Calculate how much money Jennifer would have for college for each of the options. Be sure to show your work clearly! Then determine which option is the best for Jennifer. Jennifer will be able to go to college 15 years from now.

Option One: An account	Option Two: An account	Option Three: An account	Option Four: An account
that earns an annual	that earns an annual	that earns \$150 each year.	that earns an annual
interest of 2.34%	interest of 2.5%		interest of 2.43%
compounded monthly.	compounded quarterly.		compounded continuously.
I know I need to use the	I know I need to use the	I know I need to use a	I know I need to use the
compound interest	compound interest	línear equation	compounded continuously
formula sínce optíon one	formula sínce optíon two	(y=mx+b) because option	formula sínce option four
earns interest monthly. I	earns ínterest quarterly. I	three is earning a	earns interest
know $A_0 = 5000$ because	know $A_o = 5000$ because	constant amount of	contínuously. I know Ao =
the initial amount of	the initial amount of	money per year. I know	5000 because the initial
money invested was	money invested was	m=150 because the	amount of money invested
\$5000.1 know r = .0234	\$5000.1 know r = .025	account is earning \$150	was \$5000.1 know r =
because the interest rate is	because the interest rate is	per year. I know b = 5000	.0243 because the interest
2.34% which is .0234	2.5% which is .025 when	because the initial amount	rate is 2.43% which is
when wrítten as a decimal.	wrítten as a decímal. I	of money invested was	.0243 when written as a
I know $n = 12$ because the	know $n = 4$ because the	\$5000. I know X = 15	decimal. I know t = 15
ínterest ís compounded	ínterest ís compounded	because Jennífer goes to	because Jennífer goes to
monthly which is 12 times	quarterly which is 4 times	college 15 years from now.	college 15 years from now.
a year. I know t = 15	a year. I know t = 15	Therefore,	Therefore,
because Jennífer goes to	because Jennífer goes to	y = 150(15) + 5000	$A(15) = 5000e^{(.0243)(15)}$
college 15 years from now.	college 15 years from now.	Jennífer would have	Jennifer would have \$7198.97
Therefore,	Therefore,	\$7250.	
$A(15) = 5000(1 + \frac{.0234}{12})^{12(15)}$	$A(15) = 5000(1 + \frac{.025}{4})^{4(15)}$		
Jennífer would have	Jennífer would have		
\$7100.01.	\$7266.47.		

Option two is the best option for Jennifer because it would give her the most money in 15 years.

Additional Practice:

1. Describe each piece of the formula:

$$A(t) = A_0 \left(1 + \frac{r}{n}\right)^{nt}$$

A0 =

n =

r =

t =

A(t) =

2. Describe each piece of the formula:

$$A(t) = A_0 e^{rt}$$

A₀ = e = r = t = A(t) =

3. Mr. George invests \$800 in an account which pays 20% interest compounded semiannually. Find the amount of money Mr. George has in his account after 2 years.

4. Would Mr. George have more money or less money if he invested his money in an account with the same interest rate that is compounded continuously? Explain your reasoning.

How much more or less money would Mr. George have?