Match each relation to its inverse then describe the domain and range of both functions. Name:

| Relation | Matching Inverse | Domain of Relation | Range of Relation | Domain of Inverse | Range of Inverse |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A |  |  |  |  |  |
| B |  |  |  |  |  |
| C |  |  |  |  |  |
| D |  |  |  |  |  |
| E |  |  |  |  |  |
| F |  |  |  |  |  |



Solve for $x$, in the following problems. Then complete the statement by identifying the operation you used to "undo" the equation.

| Equation | Undo Statement |
| :---: | :---: |
| 1. $24=3 \mathrm{x}$ | To undo the multiplication by 3, I would... |
| 2. $\frac{x}{5}=-2$ | To undo the division by 5, I would... |
| 3. $x+17=20$ | To undo the addition of 17, I would.... |
| 4. $\sqrt{x}=6$ | To undo the square root of x , I would.... |
| 5. $\sqrt[3]{(x+1)}=2$ | To undo the cube root of $(x+1)$, I would.... <br> Afterwards, I would undo $\qquad$ by $\qquad$ . |
| 6. $x^{4}=81$ | To undo the fourth power of x , I would.... |
| 7. $(x-9)^{2}=49$ | To undo the squaring of $(x-9)$, I would... <br> Afterwards, I would undo $\qquad$ by $\qquad$ |

