Name:

Answers with explanations

1. Given $f(x) = \sqrt{x+3} - 5$, find $f^{-1}(x)$. Show all of your work. Box your final answer.

First I need to write the function with y = instead of $f(x)$.	$y = \sqrt{x+3} - 5$
Next I will exchange the positions of x and y.	$x = \sqrt{y+3} - 5$
Now I will solve for y.	$x + 5 = \sqrt{y + 3} - 5 + 5$
I will add 5 to both sides to isolate the radical.	$x + 5 = \sqrt{y + 3}$
Since I'm trying to solve for y, I will square both sides to get rid of the square root.	$(x+5)^2 = (\sqrt{y+3})^2$
	$(x+5)^2 = y+3$
My last step is to subtract 3 from both sides to get y alone.	$(x+5)^2 - 3 = y + 3 - 3$
	$(x+5)^2 - 3 = y$
Now I must decide if the inverse is also a function. In this case it is but I need to	$(x+5)^2 - 3 = f^{-1}(x)$
restrict my domain.	
Domain of $f(x)$ is $[-3, \infty)$ so that becomes the range of $f^{-1}(x)$. The range of $f(x)$ is $[-5, \infty)$ so that is the domain of	
the inverse.	
Now I must decide if the inverse is also a function. In this case it is but I need to restrict my domain. Domain of $f(x)$ is $[-3, \infty)$ so that becomes the range of $f^{-1}(x)$. The range of $f(x)$ is	$\frac{(x+5)^2 - 3 = y}{(x+5)^2 - 3 = f^{-1}(x)}$

2. Which of the graphs below shows the inverse of the graph to the

The answer is B. The inverse of the given function will contain ordered pairs that have the x- coordinate and the ycoordinate reversed. I found the vertex of the original parabola at (-3,0) so I knew the inverse would have its vertex at (0, -3). I confirmed this decision by looking for the reflection over the y=x line. 1. Given $f(x) = (\frac{1}{3}x - 1)^3$, find $f^{-1}(x)$. Show all of your work next to each step. Box your final answer.

Step 1: Change from function notation to y=.

Step 2: Switch *x* and *y* in the equation.

Step 3: Solve for y. (Use reverse PEMDAS)

Step 4: Determine if the inverse of f(x) is a function. If so, write in function notation.

2. Which of the graphs shown is the inverse of the graph below? Explain your answer.

