$\qquad$

## Answers with explanations

1. Given $f(x)=\sqrt{x+3}-5$, find $f^{-1}(x)$. Show all of your work. Box your final answer.

| First I need to write the function with $\mathrm{y}=$ instead of $f(x)$. | $y=\sqrt{x+3}-5$ |
| :---: | :---: |
| Next I will exchange the positions of $x$ and $y$. | $x=\sqrt{y+3}-5$ |
| Now I will solve for $y$. | $x+5=\sqrt{y+3}-5+5$ |
| I will add 5 to both sides to isolate the radical. | $x+5=\sqrt{y+3}$ |
| Since I'm trying to solve for $y$, I will square both sides to get rid of the square root. | $(x+5)^{2}=(\sqrt{y+3})^{2}$ |
|  | $(x+5)^{2}=y+3$ |
| My last step is to subtract 3 from both sides to get $y$ alone. | $(x+5)^{2}-3=y+3-3$ |
|  | $(x+5)^{2}-3=y$ |
| Now I must decide if the inverse is also a function. In this case it is but I need to restrict my domain. | $(x+5)^{2}-3=f^{-1}(x)$ |
| Domain of $f(x)$ is $[-3, \infty)$ so that becomes the range of $f^{-1}(x)$. The range of $f(x)$ is $[-5, \infty)$ so that is the domain of the inverse. |  |

2. Which of the graphs below shows the inverse of the graph to the

A.

B.

C.

D.


The answer is $B$. The inverse of the given function will contain ordered pairs that have the $x$-coordinate and the $y$ coordinate reversed. I found the vertex of the original parabola at $(-3,0)$ so I knew the inverse would have its vertex at $(0,-3)$. I confirmed this decision by looking for the reflection over the $y=x$ line.

1. Given $f(x)=\left(\frac{1}{3} x-1\right)^{3}$, find $f^{-1}(x)$. Show all of your work next to each step. Box your final answer.

Step 1: Change from function notation to $y=$.
Step 2: Switch $x$ and $y$ in the equation.
Step 3: Solve for $y$. (Use reverse PEMDAS)

Step 4: Determine if the inverse of $f(x)$ is a function. If so, write in function notation.
2. Which of the graphs shown is the inverse of the graph below? Explain your answer.

A

B

D


