\qquad

Lindsay went to her doctor to get a new prescription for toenail fungus. Her doctor talked to her about the importance of taking her medicine regularly. When explaining this new medication to Lindsay, he used the following half-life function, where t represents time in hours:

$$
M(t)=60\left(\frac{1}{2}\right)^{\frac{t}{12}}
$$

Explain what each part of the equation would represent.
Initial amount of medication $=60$ units ; This would represent the beginning amount of medication that the doctor gives Lindsay. We know this because the value of 60 is in the spot where \boldsymbol{a} would go in the standard half-life formula $y=a\left(\frac{1}{2}\right)^{\frac{t}{h}}$, and \boldsymbol{a} is the y-intercept/starting value of the equation.

Length of half-life cycles $=12$ hours ; This would represent the length of the half-life cycles because we know that time is \boldsymbol{t} and we have to divide the exponent of time \boldsymbol{t} by the length of the half-life cycles to end up with the number of half-life cycles.

Amount of medicine present after \boldsymbol{t} hours $=M(t)$ units; This would represent the amount of medicine present after \boldsymbol{t} hours. We know this because it is the ending amount of the equation using function notation (same as $y=$ in the standard formula).

Additional Practice:

The half-life of a foul substance is 4 years. If you have $80 z$. of this strange substance, how much will be left in 20 years?

$$
y=a(b)^{\frac{t}{h}}
$$

Identify the values that each variable in the equation would represent and explain how you know.

1. $\mathrm{a}=$
2. $b=$
3. $t=$
4. $h=$

When you solve for y, what are you finding?
\qquad

Lindsay went to her doctor to get a new prescription for toenail fungus. Her doctor talked to her about the importance of taking her medicine regularly. When explaining this new medication to Lindsay, he used the following half-life function, where t represents time in hours:

$$
M(t)=60\left(\frac{1}{2}\right)^{\frac{t}{12}}
$$

Explain what each part of the equation would represent.
60 = initial amount of medicine; We know this because the value of 60 is in the spot where \boldsymbol{a} would go in the standard

$$
\text { half-life formula } y=a\left(\frac{1}{2}\right)^{\frac{t}{h}} \text {, and } \boldsymbol{a} \text { is the } y \text {-intercept/starting value of the equation. }
$$

$\mathbf{1 / 2}=$ decay factor (half-life); This would represent the decay factor \boldsymbol{b} in the standard exponential formula $y=a(b)^{x}$. Because the medication has a decay factor of $1 / 2$ or 50%, we know that \boldsymbol{b} has to be $1 / 2$.
$\mathbf{t}=$ time in hours; This would represent the time in hours because it is the variable in the exponent.
12 = length of the half-life cycle; This would represent the length of the half-life cycles because we know that time is \boldsymbol{t} and we have to divide the exponent of time \boldsymbol{t} by the length of the half-life cycles to end up with the number of half-life cycles.
$\mathbf{M}(\mathbf{t})=$ amount of medicine present after t hours; This would represent the amount of medication after thours because it is the ending amount of the equation using function notation (same as $y=$ in the standard formula).

Additional Practice:

The half-life of a foul substance is 4 years. If you have $80 z$. of this strange substance, how much will be left in 20 years?

$$
y=a(b)^{\frac{t}{h}}
$$

Identify the values that each variable in the equation would represent and explain how you know.

1. $\mathrm{a}=$
2. $\mathbf{b}=$
3. $t=$
4. $h=$

When you solve for y, what are you finding?

