\qquad

1) The graph below is a transformation of the parent function $f(x)=3^{x}$. Describe in words what transformation has occurred then write the equation of the graph in terms of $f(x)$.

Description of Transformation:

First, I notice that it looks like an exponential decay function, but the base is greater than 1. This means it must be reflected over the y-axis.

1 also notice that the horizontal asymptote has been moved from $y=0$ to $y=2$. Therefore, there has been a vertical shift up 2 units.

Equation in terms of $f(x)$:
A reflection over the y-axis will be represented by making the input, x, opposite.

A vertical shift will affect the output, so we would add 2 to $f(x)$. The resulting equation will be

$$
g(x)=f(-x)+2
$$

2) Describe the transformation performed on $m(x)$ that produced $\mathrm{t}(\mathrm{x})$. Then write an exponential equation for $\mathrm{t}(\mathrm{x})$.

$$
\begin{gathered}
m(x)=e^{x} \\
t(x)=2 m(x+1)-2
\end{gathered}
$$

Anything that happens directly to the input, x, indicates a horizontal change. Since $(x-h)$ means that a function has been shifted h units to the right, I can rewrite $(x+1)$ as $(x-(-1))$. Therefore, $m(x)$ has been shifted left 1 unit.

Anything that happens to the output, $m(x)$, indicates a vertical change. The coefficient of 2 indicates a vertical stretch by a factor of 2 ..

The -3 at the end indicates a shift down 2 units.
When writing an exponential equation for $t(x)$, we change the parent function, $m(x)=e^{x}$, by adding 1 to the exponent, giving the function a coefficient of 2 , and subtracting 3 at the end:

$$
t(x)=2 e^{x+1}-2
$$

1. The graph below is a transformation of the parent function $f(x)=5^{x}$. Describe in words what transformation has occurred. Then write the equation of the graph in terms of $f(x)$.

Description of transformation:

Equation in terms of $f(x)$:
2. Describe the transformation performed on $m(x)$ that produced $t(x)$. Then write an exponential equation for $\mathrm{t}(\mathrm{x})$.

$$
m(x)=3^{x}
$$

$$
t(x)=-m(x+1)
$$

$$
m(x)=e^{x}
$$

$$
t(x)=\frac{1}{2} m(x)+4
$$

$$
m(x)=6^{x}
$$

$$
t(x)=-2 m(-x)+3
$$

\qquad

1) The graph below is a transformation of the parent function $f(x)=3^{x}$. Describe in words what transformation has occurred then write the equation of the graph.

$$
g(x)
$$

Description of Transformation:

I notice that the horizontal asymptote has been moved from $y=0$ to $y=2$. Therefore, there has been a vertical shift up 2 units.

Equation: $g(x)=$

A vertical shift will affect the output, so we would add 2 to $f(x)$. So,

$$
g(x)=f(x)+2
$$

Then we can replace $\boldsymbol{f}(\boldsymbol{x})$ with $\mathbf{3}^{\boldsymbol{x}}$ and the resulting equation would be

$$
g(x)=3^{x}+2
$$

2) Describe the transformation performed on $m(x)$ that produced $t(x)$.

$$
\begin{gathered}
m(x)=e^{x} \\
t(x)=2 e^{x+1}-2
\end{gathered}
$$

Anything that happens directly to the input, x, indicates a horizontal change. Since $(x-h)$ means that a function has been shifted h units to the right, I can rewrite $(x+1)$ as $(x-(-1))$. Therefore, $m(x)$ has been shifted left 1 unit.

Anything that happens to the output, $m(x)$, indicates a vertical change. The coefficient of 2 indicates a vertical stretch by a factor of 2 .

The -3 at the end indicates a shift down 2 units.

1. The graph below is a transformation of the parent function $f(x)=5^{x}$. Describe in words what transformation has occurred. Then write the equation of the graph.

Description of transformation:

Equation: $g(x)=$
2. Describe the transformation performed on $m(x)$ that produced $\mathrm{t}(\mathrm{x})$.
a. $m(x)=3^{x}$
$t(x)=-3^{x+1}$
b. $m(x)=e^{x}$
$t(x)=\frac{1}{2} e^{x}+4$
c. $m(x)=6^{x}$
$t(x)=-2\left(6^{-x}\right)+3$

