Name: _____ Due: _____

ANSWERS WITH EXPLANATIONS

1)	$\log_{x+1} 361 = 2$	Since the unknown variable is in the base position and not in the exponent position, I know I need to change this to exponential form		
	Dase = X + I	Exponential form. So $\log a = \alpha$ translates to $h^{\chi} = \alpha$. So I need to solve:		
	exponent = 2	So $\iota o g_b u = x$ translates to $b^* = u$. So, Theed to solve:		
	Argument = 361	$(x+1)^{-} = 361$		
		I decided that the easiest way to solve this would be to		
		take the square root of both sides.		
		$\sqrt{(x+1)^2} = \pm\sqrt{361}$		
		$x + 1 = \pm 19$		
		x + 1 = 19 or x + 1 = -19		
		x = 18 or x = -20		
		(although we need to eliminate the answer $x = -20$ since		
		the base of a log cannot be negative under its domain)		
2)	$\log_{2.8} 12 = x - 4$	Since the unknown variable is in the exponent position, I know I need to use the log form of the equation. Since my calculator		
	Base = 2.8	doesn't do anything but base e and base 10. I will use the change		
	Exponent = $x - 4$	of base formula to solve this.		
	Argument = 12	$\log_{10} 12 = x - 4$		
		$\log_{2.8} 12$ π 1 $\log_{12} 12$		
		$\frac{100}{10028} = x - 4$		
		$2 \Lambda 13 - r = \Lambda$		
		$2.713 - \chi$ 7 6 /12 - χ		
		$0.415 - \lambda$		
3)	$\ln(4x-3) = 5.7$	This equation has the unknown variable in the argument		
		position. Since it is not in the exponent position, I need to		
	Base = e	change from into exponential form.		
	Exponent = 5.7	$\ln(4x-3) = 5.7 \rightarrow e^{5.7} = 4x-3$		
	Argument = 4x-3	298.867 = 4x - 3		
		301.867 = 4x		
		75.467 = x		

ADDITIONAL PRACTICE:

Part 1:

Identify the base, the exponent, and the argument for each. Then translate each from logarithm form to exponential form. DO NOT SOLVE.

1.	$log_3 x = 6$	2.	$\ln(6x+1) = 44$
	Base =		Base =
	Exponent =		Exponent =
	Argument =		Argument =
	Translation:		Translation:

Part 2:

Use the change of base formula to rewrite each logarithm. Solve for x. Show your work.

3. $log_5 30 = x$ 4. $log_{4,1} 10 = 2x - 3$

Part 3:

Determine if the following equations need to be solved in logarithm or exponential form. Translate into the appropriate form then solve showing all steps.

5.
$$log_{3x+4}125 = 3$$

6. $ln(14x - 6) = 8$
7. $log_9122 = x + 1.5$