\qquad Due: \qquad

ANSWERS WITH EXPLANATIONS

1) $\log _{x+1} 361=2$

Base $=x+1$
Exponent = 2
Argument = 361
2) $\log _{2.8} 12=x-4$

Base $=2.8$
Exponent =x-4
Argument $=12$

Since the unknown variable is in the base position and not in the exponent position, I know I need to change this to exponential form.
So $\log _{b} a=x$ translates to $b^{x}=a$. So, I need to solve:

$$
(x+1)^{2}=361
$$

I decided that the easiest way to solve this would be to take the square root of both sides.

$$
\begin{gathered}
\sqrt{(x+1)^{2}}= \pm \sqrt{361} \\
x+1= \pm 19 \\
x+1=19 \text { or } x+1=-19 \\
x=18 \text { or } x=-20
\end{gathered}
$$

(although we need to eliminate the answer $x=-20$ since the base of a log cannot be negative under its domain)

Since the unknown variable is in the exponent position, I know I need to use the log form of the equation. Since my calculator doesn't do anything but base e and base 10 , I will use the change of base formula to solve this.

$$
\begin{gathered}
\log _{2.8} 12=x-4 \\
\frac{\log 12}{\log 2.8}=x-4 \\
2.413=x-4 \\
6.413=x
\end{gathered}
$$

This equation has the unknown variable in the argument position. Since it is not in the exponent position, I need to change from into exponential form.

$$
\begin{aligned}
\ln (4 x-3)=5.7 & \rightarrow e^{5.7}=4 x-3 \\
298.867 & =4 x-3 \\
301.867 & =4 x \\
75.467 & =x
\end{aligned}
$$

ADDITIONAL PRACTICE:

Part 1:

Identify the base, the exponent, and the argument for each. Then translate each from logarithm form to exponential form. DO NOT SOLVE.

1. $\log _{3} x=6$

Base =
Exponent =
Argument =
Translation:
2. $\ln (6 x+1)=44$

Base =
Exponent =
Argument =
Translation:

Part 2:
Use the change of base formula to rewrite each logarithm. Solve for x. Show your work.
3. $\log _{5} 30=x$
4. $\log _{4.1} 10=2 x-3$

Part 3:

Determine if the following equations need to be solved in logarithm or exponential form. Translate into the appropriate form then solve showing all steps.
5. $\log _{3 x+4} 125=3$
6. $\ln (14 x-6)=8$
7. $\log _{9} 122=x+1.5$

