\qquad

1. Use factoring to solve. Show your work.

$$
-4 w^{2}+5 w=-6
$$

| Step 1: Set the expression equal to 0. |
| :--- | :--- |
| Add 6 to both sides |$\quad-4 w^{2}+5 w+6=0$

Additional Practice:

1) Use factoring to solve. Show your work.

$$
14 x^{2}-120=64 x
$$

2. Complete the square to write this quadratic in vertex form. Show your work.

$$
g(x)=2 x^{2}-12 x+22
$$

Step 1: Set the expression equal to 0.	$2 x^{2}-12 x+22=0$
Step 2: Move the constant term to the other side. Add 22 to both sides	$2 x^{2}-12 x=-22$
Step 3: Factor out the leading coefficient.	$2\left(x^{2}-6 x\right)=-22$
Step 4: Create a perfect square trinomial and add the constant term to both sides. The constant term of the perfect square $\begin{aligned} & \text { trinomial }=\left(\frac{b}{2}\right)^{2} \\ & \left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \end{aligned}$	$\begin{gathered} 2\left(x^{2}-6 x+9\right)=-22+2(9) \\ 2\left(x^{2}-6 x+9\right)=-4 \end{gathered}$
Step 5: Factor the perfect square trinomial by using the diamond. -6 1 know that $a^{*} c$ goes into the top of the diamond and b goes into the bottom of the diamond. Then 1 must find two integers that multiply to the top number and add to the bottom number. Then 1 rewrite the expression by replacing the b value with the two factors that 1 found above. $x^{2}-3 x-3 x+9$ Then 1 factor by grouping by determining the greatest common factor (GCF) of the first two terms and the second two terms. $x(x-3)-3(x-3)$ The GCF of the first two terms is x. When you divide $x^{2}-3 x$ by x, you are left with $x-3$. The GCF of the second two terms is -3 . When you divide $-3 x+9$ by -3 , you are left with $x-3$. since the terms in parentheses are the same, you can make them one set of parentheses and put your GCF into another set of parentheses. $(x-3)(x-3)$	$2(x-3)^{2}=-4$
Step 6: Move the constant term back over. Add 4 to both sides.	$2(x-3)^{2}+4$

Additional Practice:

2) Complete the square to write this quadratic in vertex form. Show your work.

$$
f(x)=4 x^{2}+4 x+36
$$

\qquad

1. Use factoring to solve. Show your work.

$$
4 w^{2}-5 w=6
$$

Step 1: Set the expression equal to 0. subtract 6 from both sides	$4 w^{2}-5 w-6=0$
Step 2: Factor by using the diamond.	$(4 w+3)(w-2)=0$

Additional Practice:

1) Use factoring to solve. Show your work.

$$
7 x^{2}-20=31 x
$$

2. Complete the square to write this quadratic in vertex form. Show your work.

$$
g(x)=x^{2}-6 x+11
$$

Step 1: Set the expression equal to 0.	$x^{2}-6 x+11=0$
Step 2: Move the constant term to the other side. Subtract 11 from both sides	$x^{2}-6 x=-11$
Step 3: Create a perfect square trinomial and add the constant term to both sides. The constant term of the perfect square trinomial $=$ $\begin{aligned} & \left(\frac{b}{2}\right)^{2} \\ & \left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \end{aligned}$	$\begin{gathered} x^{2}-6 x+9=-11+9 \\ x^{2}-6 x+9=-2 \end{gathered}$
Step 4: Factor the perfect square trinomial by using the diamond. -6 1 know that $a^{*} c$ goes into the top of the diamond and b goes into the bottom of the diamond. Then 1 must find two integers that multiply to the top number and add to the bottom number. Then 1 rewrite the expression by replacing the b value with the two factors that I found above. $x^{2}-3 x-3 x+9$ Then 1 factor by grouping by determining the greatest common factor (GCF) of the first two terms and the second two terms. $x(x-3)-3(x-3)$ The GCF of the first two terms is x. When you divide $x^{2}-3 x$ by x, you are left with $x-3$. The GCF of the second two terms is -3 . When you divide $-3 x+9$ by -3 , you are left with $x-3$. since the terms in parentheses are the same, you can make them one set of parentheses and put your GCF into another set of parentheses. $(x-3)(x-3)$	$(x-3)^{2}=-2$
Step 5: Move the constant term back over. Add 2 to both sides.	$(x-3)^{2}+2$

Additional Practice:

2) Complete the square to write this quadratic in vertex form. Show your work.

$$
f(x)=x^{2}+10 x+18
$$

