Name _____

1. Use factoring to solve. Show your work.

 $-4w^2 + 5w = -6$

Step 1: Set the expression equal to 0.	$-4w^2 + 5w + 6 = 0$
Add 6 to both sides	
Step 2: Factor by using the diamond.	(-4w-3)(w-2) = 0
 -24 8 -3 5 1 know that a*c goes into the top of the diamond and b goes into the bottom of the diamond. Then I must find two integers that multiply to the top number and add to the bottom number. 	
Then I rewrite the expression by replacing the b value with the two factors that I found above. $-4w^2 + 8w - 3w + 6$ Then I factor by grouping by determining the greatest common factor (GCF) of the first two terms and the second two terms. -4w(w-2) - 3(w-2) The GCF of the first two terms is -4w. When you divide $-4w^2 + 8w$ by $-4w$, you are left with $w - 2$. The GCF of the second two terms is -3. When you divide $-3w + 6$ by -3 , you are left with $w - 2$. Since the terms in parentheses are the same, you can make them one set of parentheses and put your GCF into another set of parentheses. (-4w - 3)(w - 2)	
Step 3: Solve for w. I must set each factor equal to zero and solve for w. (-4w - 3) = 0 and $(w - 2) = 0$	$w = \frac{-3}{4}$ and $w = 2$

Additional Practice:

1) Use factoring to solve. Show your work.

 $14x^2 - 120 = 64x$

2. Complete the square to write this quadratic in vertex form. Show your work.

$$g(x) = 2x^2 - 12x + 22$$

Step 1: Set the expression equal to 0.	$2x^2 - 12x + 22 = 0$
Step 2: Move the constant term to the other side.	$2x^2 - 12x = -22$
Add 22 to both sides	
Step 3: Factor out the leading coefficient.	$2(x^2 - 6x) = -22$
Step 4: Create a perfect square trinomial and add the constant	$2(x^2 - 6x + 9) = -22 + 2(9)$
term to both sides. The constant term of the perfect square	
trinomial = $\left(\frac{b}{a}\right)^2$	$2(x^2 - 6x + 9) = -4$
-6	
$\left(\frac{1}{2}\right)^2 = (-3)^2 = 9$	
-	
Step 5: Factor the perfect square trinomial by using the	$2(x-3)^2 = -4$
diamond.	
\wedge a \wedge I know that a*c goes	
into the top of the	
díamond and b goes	
-3 $>$ $<$ -3 $<$ into the bottom of the	
díamond. Then I must	
find two integers that	
multíply to the top	
-6 number and add to the	
bottom number.	
Then I rewrite the expression by replacing the b value with the	
two factors that I found above.	
$x^2 - 3x - 3x + 9$	
Then I factor by grouping by actermining the greatest	
common factor (GC+) of the first two terms and the second	
two terms.	
x(x-3) - 3(x-3) The COE of the first two terrors is x to them you divide y?	
The GCT of the first two terms is a votient gou atture as - 3A	
is -3 when you divide -3x+0 hu -3 you are left with x-3	
Since the terms in parentheses are the same interain make	
them one set of parentheses and put hour COE into another	
set of parentheses.	
(x-3)(x-3)	
Step 6: Move the constant term back over	$2(x-3)^2 + 4$
Add 4 to both sídes.	-(~ 0) 1

Additional Practice:

2) Complete the square to write this quadratic in vertex form. Show your work.

$$f(x) = 4x^2 + 4x + 36$$

PCFU (C1) CP – Quadratics Review

Name _____

1. Use factoring to solve. Show your work.

 $4w^2 - 5w = 6$

Step 1: Set the expression equal to 0. Subtract 6 from both sídes	$4w^2 - 5w - 6 = 0$
Step 2: Factor by using the diamond.	(4w+3)(w-2) = 0
-24 -8 -8 -5 -5 -5 -5 -24 -8 -8 -8 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	
Then I rewrite the expression by replacing the b value with the two factors that I found above. $4w^2 - 8w + 3w - 6$ Then I factor by grouping by determining the greatest common factor (GCF) of the first two terms and the second two terms. 4w(w - 2) + 3(w - 2) The GCF of the first two terms is 4w. When you divide $4w^2$ -8w by 4w, you are left with w - 2. The GCF of the second two terms is 3. When you divide $3w-6$ by 3, you are left with w-2. Since the terms in parentheses are the same, you can make them one set of parentheses and put your GCF into another set of parentheses. (4w + 3)(w - 2)	
Step 3: Solve for w. I must set each factor equal to zero and solve for w. (4w + 3) = 0 and $(w - 2) = 0$	$w = \frac{-3}{4}$ and $w = 2$

Additional Practice:

1) Use factoring to solve. Show your work.

$$7x^2 - 20 = 31x$$

2. Complete the square to write this quadratic in vertex form. Show your work.

 $g(x) = x^2 - 6x + 11$

Step 1: Set the expression equal to 0.	$x^2 - 6x + 11 = 0$
Step 2: Move the constant term to the other side.	$x^2 - 6x = -11$
Subtract 11 from both sides	
Step 3:	$x^2 - 6x + 9 = -11 + 9$
Create a perfect square trinomial and add the constant term to	
both sides. The constant term of the perfect square trinomial =	$x^2 - 6x + 9 = -2$
$\left(\frac{b}{2}\right)^2$	
-6	
$\left(\frac{1}{2}\right)^2 = (-3)^2 = 9$	
Step 4: Factor the perfect square trinomial by using the	$(x-3)^2 = -2$
diamond.	
∧ a ∧ I know that a*c goes	
into the top of the	
díamond and b goes	
-3 > <-3 into the bottom of the	
díamond. Then I must	
find two integers that	
multíply to the top	
-6 number and add to the	
hottory in the her	
Then I rewrite the expression by replacing the b value with the	
two factors that I found above.	
$x^2 - 3x - 3x + 9$	
Then I factor by grouping by determining the greatest	
common factor (GCF) of the first two terms and the second	
two terms.	
x(x-3) - 3(x-3)	
The GCF of the first two terms is x. When you divide x ² - 3x	
by x, you are left with x - 3. The GCF of the second two terms	
ís -3. When you dívíde -3x+9 by -3, you are left with x-3.	
Since the terms in parentheses are the same, you can make	
them one set of parentheses and put your GCF into another	
set of parentheses.	
(x-3)(x-3)	
Step 5: Move the constant term back over.	$(x-3)^2+2$
Add 2 to both sides.	

Additional Practice:

2) Complete the square to write this quadratic in vertex form. Show your work.

$$f(x) = x^2 + 10x + 18$$