\qquad

1. Use your graphing calculator to graph each of the following functions. Draw a sketch of the graph. Be as precise in your sketch as possible!

2. All of the above functions are called EVEN functions.
a. What type of symmetry does each graph have?
b. What is special about the exponents on the variables of each term in the functions?
c. What happens when you evaluate $f(-x)$ for each of the functions?
3. Use your graphing calculator to graph each of the following functions. Draw a sketch of the graph. Be as precise in your sketch as possible!

4. All of the above functions are called ODD functions.
a. What type of symmetry does each graph have?
b. What is special about the exponents on the variables of each term in the functions?
c. What happens when you evaluate $f(-x)$ for each of the functions?
5. In general,
a. An EVEN function has the following properties:
i. Its graph is symmetric about the \qquad
ii. The exponents of all terms in its equation are \qquad
iii. $f(-x)=$ \qquad
b. An ODD function has the following properties:
i. Its graph is symmetric about the \qquad
ii. The exponents of all terms in its equation are \qquad
iii. $f(-x)=$ \qquad
6. Consider the function $f(x)=x^{3}-x^{2}+x$, would it be even or odd? Investigate all three properties from above.
*The function above is NEITHER even nor odd.
7. Determine whether each of the following is even, odd or neither. You must justify your answer by discussing all three properties.
a. $f(x)=-\frac{1}{2} x^{4}+3 x^{2}$

b. $f(x)=-x^{2}+x$

c. $f(x)=x^{5}+2 x^{3}-4 x$

d. $f(x)=x^{3}-4 x+6$

