I can represent cubic functions using words, tables, graphs \& equations. I can determine domain and range of cubic functions in context. I can connect characteristics to factors. (C2, C3)

1. The volume $V(x)$ of a box is defined by the function: $V(x)=x(6-2 x)(10-2 x)$, where each factor represents a dimension of the box. What is the domain and range of the function? What is the domain and range in context?

a) Function (theoretical):

Domain:
Range:
b) Context (practical):

Domain:
Range:
c) What do the practical domain and range mean for this problem?

I can determine if a graph or an equation represents an even or odd function. (C4)
2. Evaluate for the criteria that apply determine whether each is an even or odd function.
a) $f(x)=5 x^{4}-7 x^{2}+9$
i) Describe the exponents:
ii) $f(-x)=$
iii) Is the function odd, even, or neither?

c)	i) What type (if any) of symmetry does it have?
ii) $f(-x)=$	
d)	iii) Is the function odd, even, or neither?

b) $h(x)=a x^{7}-b x^{5}+c x^{3}-9$
i) Describe the exponents:
ii) $\quad f(-x)=$
iii) Is the function odd, even, or neither?
i) What type (if any) of symmetry does it have?
ii) $f(-x)=$
iii) Is the function odd, even, or neither?
i) What type (if any) of symmetry does it have?
ii) $f(-x)=$
iii) Is the function odd, even, or neither?

I can determine the possible number of relative extrema, number absolute extrema, the number of possible zeros by looking at the degree of a polynomial. (C5)
3. State the number(s) of possible relative extrema, number of absolute extrema \& possible number(s) of zeros for each function:
(a) $f(x)$ is a $5^{\text {th }}$ degree polynomial:
Relative 4,2, or 0
Absolute \qquad Zeros \qquad
(b) $f(x)$ is a $6^{\text {th }}$ degree polynomial:
Relative \qquad Absolute \qquad Zeros \qquad

I can find extrema, intervals of increase or decrease, end behaviors, and possible number of zeros based on the degree of the polynomial. (C6)
4. $f(x)=(x+3)^{2}(x+2)$

Number of Absolute Extrema: \qquad
Number of Relative Extrema: \qquad
Intervals of Increase: \qquad

Intervals of Decrease: \qquad
End Behavior: As $x \rightarrow-\infty, y \rightarrow$ \qquad , As $x \rightarrow \infty, y \rightarrow$ \qquad

I can draw a graph of a polynomial function given the characteristics. (C7)
5. As $x \rightarrow-\infty, y \rightarrow \infty$, As $x \rightarrow \infty, y \rightarrow-\infty$. Relative minimums at $x=-4,4$; relative maximums at $x=0,8$

6. Roots: $\mathrm{x}=-4,-1$ with multiplicity 2,3 with multiplicity 3 . Absolute maximum at $x=1$

I can understand the fundamental theorem of algebra. (C8)

Circle all that are possible.

7. Quartic Function

(a) 1 real root, 4 imaginary roots
(b) 3 real roots, 1 imaginary root
(c) 4 real roots, 0 imaginary roots
(d) 2 real roots, 2 imaginary roots
(e) 5 real roots, 0 imaginary roots
8. Quintic Function
(a) 7 real roots, 0 imaginary roots
(b) 3 real roots, 2 imaginary roots
(c) 4 real roots, 1 imaginary root
(d) 1 real root, 4 imaginary roots
(e) 2 real roots, 3 imaginary roots

I can write polynomials in standard and factored form and find their zeros. (C9, C10)
9. Write in standard form:

$$
(4 x+1)^{2}(3-x)
$$

11. Write in factored form: $36 x^{3}-3 x^{2}-18 x$
12. Write in factored form: $x^{5}-4 x^{4}+4 x^{3}$
13. Find the zeros algebraically and indicate multiplicity:

$$
h(x)=-3 x(2 x+5)^{3}(6-x)^{2}
$$

Zeros: \qquad
13. Use long division to determine if $5 x+7$ is a factor of $5 x^{3}-28 x^{2}+x+70$.
14. Use long division to evaluate

$$
4 x^{4}-19 x^{3}+24 x^{2}-49 x-10 \div 4 x-3
$$

Is $5 x+7$ a factor of $5 x^{3}-28 x^{2}+x+70$?

I can divide a polynomial by a binomial using synthetic division. I can write the dividend as the product of the divisor and the quotient plus the remainder. (C13)
15. Use synthetic division to determine if $x-3$ is a factor of $3 x^{4}-2 x^{2}-70 x-20$.

Is $x+3$ a factor of $3 x^{4}-2 x^{2}-70 x-20$?
17. Use your answer in \#15 to write the polynomial
as a product of the divisor and the quotient plus the remainder.
16. Use synthetic division to evaluate

$$
2 x^{4}+16 x^{3}+34 x^{2}-4 x+48 \div x+4
$$

I can use the remainder theorem to evaluate a polynomial for a given value. I can use the remainder theorem to find a missing value. (C14)
18. Given $\frac{P(x)}{x-4}=x^{2}-5 x+6 R 42$ what is $P(4)$? Show work or explain your answer.
19. If $\frac{x^{4}+2 x^{2}+a x+4}{x-2}=x^{3}+2 x^{2}+6 x+15 R 34$,
solve for a. Show your work.

I can divide polynomials and factor completely. (C15)
20. Given $2 x+3$ is a factor of $h(x)$, factor $h(x)=10 x^{4}+23 x^{3}-12 x^{2}-36 x$ completely.

I can factor higher order polynomials using grouping and by using quadratic form. (C16)
21. Factor completely. $x^{3}-3 x^{2}-16 x+48$
22. Factor completely. $x^{4}-40 x^{2}+144$

I can factor a sum of cubes and a difference of cubes. (C17)
23. Write in factored form: $8 x^{3}+27$
24. Write in factored form: $125 w^{3}-64$
25. Solve by factoring and sketching: $4 x^{3}+12 x^{2}-9 x-27>0$
a. Sketch the graph.

b. Draw a number line to represent your solution.
c. Write your solution in interval notation.

I can find the solution to a polynomial inequality graphically. I can represent a solution to a polynomial inequality using inequalities, interval notation, number lines, and verbal descriptions in context. C19

Emilio has been trying to regulate the pH level in his aquarium for 5 hours. For the water to be safe for the fish, he must keep the $p H$ less than or equal to 9 . The function $p(x)=-0.34 x^{3}+2.652 x^{2}-5.4638 x+11.1114$ represents the pH level in the tank x hours since Emilio began to regulate it.
26. Write and solve an inequality to determine the time intervals during which the pH was safe for Emilio's fish. State your solution in interval notation. Explain in words what your solution means. Sketch the graph.
a. Write and solve an inequality to determine the time intervals during which the pH was safe for Emilio's fish.

b. Sketch the graph

d. Explain in words what your solution means.

