Divide using long division. Check your answers.

1.
$$(x^2 - 3x - 40) \div (x + 5)$$

2.
$$(x^3 + 2x^2 - 5x - 6) \div (x + 1)$$

Check: Check:

Use your results from #1 and #2 to help you write each equation in factored form. (Remember the number of factors should match the degree of the polynomial!!)

$$3. v = x^2 - 3x - 40$$

$$4. v = x^3 + 2x^2 - 5x - 6$$

Use synthetic division and the given factor to <u>completely factor</u> each polynomial function. (Remember the number of factors should match the degree of the polynomial!!)

5.
$$y = x^3 + 2x^2 - 5x - 6$$
; $(x + 1)$

6.
$$y = x^3 - 4x^2 - 9x + 36$$
; $(x + 3)$

Use division to determine whether each binomial is a factor of the given polynomial. Be careful... not all of these can be done using synthetic division!

7.
$$2x^3 + 9x^2 + 14x + 5$$
; $(2x + 1)$

8.
$$x^4 + 3x^2 + x + 4$$
; $(x + 3)$

9.
$$3x^4 - 5x^3 + 2x^2 + 3x - 2$$
; $(3x - 2)$

10.
$$x^4 - 6x^2 - 27$$
; $(x + 2)$

Answer the questions below. The remainder theorem may be helpful.

11. Given
$$\frac{P(x)}{x-3} = x^2 + 3x - 4 R 25$$
, what is $P(3)$?

12. Determine *a* if (x-4) is a factor of
$$f(x) = x^3 + ax^2 - 20x - 48$$
.

13. Determine *a* if
$$\frac{2x^3 + ax^2 - 36x - 36}{x - 3} = 2x^2 - 36 R - 144$$
.