	Ker	eling with Geometry Review
NCM3 Uni	t D: Mod	eling with Geometry Review

Part One: Equations of a Circle

 $(x-h)^2+(y-k)^2=r^2$ I can find the center and radius of a circle given its equation. D1

a.
$$(x+2)^2 + (y-3)^2 = 25$$

$$(-2,3) r= 5$$

b.
$$(x-1)^2 + y^2 = 40$$

I can write an equation for a circle given key characteristics. D3-D4

a. Center: (-2, 5); Radius: 7
$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

$$(x - -2)^{2} + (y - S)^{2} = 7^{2}$$

$$(x + 2)^{2} + (y - S)^{2} = 49$$
c. Center: (-2,7); Point on Circle: (6,-5)

b. Center: (7, 0); Circumference:
$$24\pi$$

$$(x-h)^2 + (y-lc)^2 = r^2 C = 2\pi r$$

$$(x-7)^2 + (y-b)^2 = 12^2$$

$$(x-7)^2 + y^2 = 144$$
d. Ends of a diameter: (2, -2) and (4, -6)

$$\begin{array}{c} (6-5) r = \sqrt{(\chi_2-\chi_1)^2 + (y_2-y_1)^2} \\ (-2,1) \\ r = \sqrt{(6--2)^2 + (-5-7)^2} \\ (-2,1) \\ r = \sqrt{8^2 + (-12)^2} \\ (-2)^2 + (y-7)^2 = \sqrt{208} \end{array} \begin{array}{c} (2+4) radius \\ (3,-4) \\ (3,-4) \\ (3,-4) \\ (4,-6) \\ (4,-6)^2 + (y-2)^2 + (y-2)^2 \\ (2,-2)^2 + (y-2)^2 + ($$

$$= \sqrt{(\chi_{2}-\chi_{1})^{2} + (y_{2}-y_{1})^{2}}$$

$$= \sqrt{(6-2)^{2} + (-5-7)^{2}}$$

$$= \sqrt{(8-2)^{2} + (-12)^{2}}$$

$$= \sqrt{(2-\chi_{1})^{2} + (y_{2}-y_{1})^{2}}$$

$$= \sqrt{($$

3. I can complete the square to write an equation for a circle in standard form and use it to find its center and radius. D2-D3

b.
$$14x + 6y + 22 = -x^2 - y^2 + x^2 + y^2 - 22 + x^2 + y^2 - 22$$

 $x^2 + y^2 + 14x + 6y = 22$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x + 49) + (y^2 + 6y + 9) = 22 + 49 + 9$
 $(x^2 + 14x +$

$$(x^{2}-6x+\frac{9}{4})+(y^{2}+11y+30.25)=-3.25+\frac{9}{4}+\frac{30.75}{30.25}$$

$$\frac{-6}{2}=(-3)(-3)^{2}=9$$

$$\frac{1}{2}=5.5(5.5)^{2}=30.25$$

$$(x-3)^{2}+(y+5.5)^{2}=36$$

$$Center(3,-5.5) r=6$$

7/2

- 4. I can use multiple volume formulas together to find the volume of composite shapes. D5-D7
 - a. Find the volume of the pyramid to the right. Show your work.

b. Suppose a cone was constructed around the pyramid in such a way that the base of the pyramid was inscribed in the base of the cone and the cone had a height of 4.5 mi. Find the volume of the cone show your work.

The hypotenuse of the

The hypotenuse of the triangle is The diameter of the Circle
So r=2.5 mi

c. Ms. Pace had a special dog house built for her dog, Franklin. Find the volume (living area) of this house if the diameter of the base is 6 feet and the total height is 8 feet. The distance from the floor to the lowest part of the roof is 5.75 feet. r=3 ft 8-5 .75 = 2.25

5. I can compare volumes of the same shape with different dimensions to determine which dimension has a greater effect. D6

A cylinder has a diameter of 10 cm and a height of 10 cm. Which would have a greater effect on the volume, doubling the diameter or doubling the height? Explain your reasoning.

Doubling the diameter because the radius is squared in the volume for mula prognal volume: TTr2h TT(s)2(10) = 250 TT cm3

Double Radius: TT(10)2(10) = 1000 TT cm3

Double Height: TT(5)2(20) = 500 TT cm3

6.	I can use volume and surface area to solve contextual problems. D8	DIZ
\	a. Find the total volume of the storage barn on the right. Round your answer to the nearest tenth. Show your work. $= \frac{1}{2} Cylinden + Rectangular Prism$ $= \frac{11}{3} (3)^{2} (10) + (6)(6)(10) = 4517 + 360 \approx 501.4 \text{ m}^{3}$ b. Suppose the owner wanted to paint the roof red and the rest of the	roof Half Cyline Rectaughte Ansim
	building black. Find the cost of the minimimum amount of paint needed to put two coats on the roof and a single coat of paint on the building. One gallon of exterior paint covers about 30 square meters. Each gallon cost taxes included. Show your work. (Hint: Surface Area of a Cylinder = $2\pi rh + 2\pi r^2$) 2 Coats of Red on Roof (Coat of black on	
	2 coats would be like Painting 1 cylinder Dince This is a half cylinder 2 (6x10) + 2TTTh + 2TT r ² 2TT(2)(10) + 2TT(3) ² 192r	2 phort sides 2(6×6) 72m ² n ²
7.	$60T + 18T$ $78T$ 245.04 m^{2} $30 \text{ m} = 8.16 \boxed{9 \text{ allows of red}}$ $1 \text{ can find 3D solids from rotating 2D figures. D9 D10}$	elons of black)
	a. What 3D object is formed by rotating this triangle around line m? $$1256.4$ Describe any known characteristics of the 3D shape. A cond is formed The radius is 1 The height is 3 Volume = $\frac{1}{3}$ Tr ² h = $\frac{1}{3}$ Tr(1) ² (3) = T with	3
	b. What 3D object is formed by rotating this rectangle around line m? Describe any known characteristics of the 3D shape. A cylinder is formed.	4

The radius is 1.
The height is 4.
Volume = TTr2h = TT(1)2(4) = 4TT units3

8. I can determine cross sections of 3D solids. D11	D12
a. What 2D figure can we create by taking a horizontal cross-section of a cone? Name and sketch. Horizontal Cross sections A Circle ALWAYS match the base	
b. What 2D figure can we create by taking a vertical cross-section through the apex of a cone? Name and sketch. A triangle	
c. What 2D figure can we create by taking a horizontal cross-section of this rectangular pyramid? Name and sketch. A VELLANGE d. What 2D figure can we create by taking a vertical cross-section of this rectangular pyramid? Name and sketch.	
Through apex: A triangle Through ade: A trapezoid e. What is the greatest possible number of edges of a cross section created from a repyramid?	
pyramid? 5 edges because Mere are 5 for The Choss section cannot have more edge We solid has faces. f. What 2D figure can we create by taking a horizontal cross-section of a cylinder? Name and sketch.	tes than
g. What 2D figure can we create by taking a vertical cross-section of a cylinder? Name and sketch.	
A rectangle	