\qquad

1. A circle of radius r has a center at point (h, k) and includes the point (x, y). Find the distance from the point (h, k) to the point (x, y). Then explain how this equation relates to the equation of a circle. A picture may be helpful.

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	First I substituted the coordinates of my points into the distance formula. This gave me the length of r, which is the radius of the circle drawn.
$r=\sqrt{(x-h)^{2}+(y-k)^{2}}$	$r^{2}=(x-h)^{2}+(y-k)^{2}$
Then I squared both sides of the equation. That gave me the standard form of an equation of a circle with a center at (h, k) and a radius of r.	

2. Write the equation for a circle with a center at $(-3,2)$ and a radius of 4.

$(x-h)^{2}+(y-k)^{2}=r^{2}$	ALWAYS write down the formula or equation.
$(x--3)^{2}+(y-2)^{2}=4^{2}$	Then substitute the given information into the equation. $(\mathrm{h}=-3, \mathrm{k}=2, \mathrm{r}=4)$
$(x+3)^{2}+(y-2)^{2}=16$	Then simplify where possible.

3. Identify the center and radius for the following circle. $\quad(x-5)^{2}+(y+4)^{2}=50$

I am comparing the given equation with the standard equation:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

When I do this, I have to remember that the minus sign is part of the standard equation. That means in $(x-5)^{2}$, the h-value is 5 . In $(y+4)^{2}$, I have to think of it as $(y-4)^{2}$ to understand why the k-value is -4 . So the center is $(5,-4)$. The radius is found by square rooting r^{2}. Here that means the radius would be $\sqrt{50}$. I can simplify this answer by factoring 50 into $25 \cdot 2$. Then $\sqrt{50}=\sqrt{25 \cdot 2}=\sqrt{25} \cdot \sqrt{2}$ or $5 \sqrt{2}$.

Additional Practice:

1. Write an equation in standard form for a circle with a center at $(3,5)$ and a radius of 6 .
2. Now write an equation in standard form for a circle with a center at $(-3,5)$ and a radius of 6 .
3. What did you have to change in the equation when the center was at -3 instead of 3 ?
4. Find the center and radius of the circle formed by the equation: $(x-2)^{2}+(y-3)^{2}=9$
5. Find the center and radius of the circle formed by the equation: $(x+4)^{2}+(y+2)^{2}=9$
6. Find the center and radius of the circle formed by the equation: $(x-2)^{2}+(y+3)^{2}=2$
