Problem 1 Shifty Behavior, Take 1

Recall from A Rational Existence that the reciprocal of power functions have a vertical asymptote at $x=0$ and a horizontal asymptote at $y=0$. The domain is all real numbers except for 0 , because division by 0 is undefined.
 negative c-values to complete the table.

c-value	$g(x)=\frac{1}{x-c}$	Vertical Asymptote(s)	Horizontal Asymptote(s)	Domain	Range
1	$g(x)=\frac{1}{x-1}$				
-2	$g(x)=\frac{1}{x+2}$				

b. Determine the general formula to identify the vertical asymptote of a rational function in the form $g(x)=\frac{1}{x-c}$. Explain your reasoning.
c. What generalization(s) can you make about the c-value and the domain? The range?
d. What effect does changing the c-value have on the function's end behavior? Explain your reasoning.
2. Without using a graphing calculator, determine the domain, range, and vertical and horizontal asymptotes of each rational function.
a. $f(x)=\frac{10}{x}$

Domain:

Range:
Vertical Asymptote:
Horizontal Asymptote:
b. $g(x)=\frac{1}{x+10}$

Domain:

Range:
Vertical Asymptote:
Horizontal Asymptote:
c. $j(x)=10 x$

Domain:

Range:
Vertical Asymptote:

Horizontal Asymptote:
d. $g(x)=\frac{1}{x-10}$

Domain:

Range:

Vertical Asymptote:

Horizontal Asymptote:
3. Write the rational function(s) from the graph, table, or description provided. Explain your reasoning.
a.

Function: \qquad
Explanation:
b. Vertical asymptote at $x=3$ and a horizontal asymptote at $y=0$.

Function 1: \qquad

Function 2: \qquad
Explanation:

c. Domain: All Real Numbers except $x=7$

Range: All Real Numbers except $y=0$

Function 1: \qquad

Function 2: \qquad

Explanation:

PROBLEM 2 Ctrl-Alt-Shift

Consider the functions $y=f(x)$ and $g(x)=A f(B(x-C))+D$. Recall that adding a constant D translates $f(x)$ vertically, while adding a constant C translates $f(x)$ horizontally. Multiplying by the constant A dilates $f(x)$ vertically, while multiplying by the constant B dilates $f(x)$ horizontally. Rational functions are transformed in the same manner.

1. The function $f(x)=\frac{1}{X}$ is shown in black on each coordinate plane. Determine whether the second function on each graph is $j(x)=\frac{1}{x+2}, m(x)=\frac{2}{x}$, or $k(x)=\frac{1}{x}+2$.
Explain your reasoning.

	Function: Explanation:
	Function: Explanation:
	Function: Explanation:

2. Given $f(x)=\frac{1}{x}$.
a. Sketch $g(x)=f(x)+5$
b. Sketch $h(x)=f(x+5)$.

Explanation:

Explanation:
3. Write a rational function $g(x)$ that matches the given characteristics. Sketch the function on the coordinate plane.
a. Vertical asymptote at $x=2$
b. Vertical asymptote at $x=1, x=-5$
Horizontal asymptote at $y=-3$
Horizontal asymptote at $y=1$

$g(x)=$
$g(x)=$
c. For $f(x)=\frac{1}{x}, g(x)=f(x-2)-4$
d. For $f(x)=\frac{1}{x}, g(x)$ shifts $f(x)$ up and to the left.

$$
g(x)=
$$

$g(x)=$

Be prepared to share your solutions and methods.

