

Recall from A Rational Existence that the reciprocal of power functions have a vertical asymptote at x = 0and a horizontal asymptote at y = 0. The domain is all real numbers except for 0, because division by 0 is undefined.

In this problem you will use a graphing calculator to explore rational functions of the form

 $g(x) = \frac{1}{x - c}$ for a constant value c.

- 1. Consider the table shown.
 - a. Identify the vertical asymptote, horizontal asymptote, domain, and range for the given c-values. Then choose different positive and negative c-values to complete the table.

c-value	$g(x)=\frac{1}{x-c}$	Vertical Asymptote(s)	Horizontal Asymptote(s)	Domain	Range
1	$g(x)=\frac{1}{x-1}$				
-2	$g(x)=\frac{1}{x+2}$				

Compare your answers to your classmates' and discuss the behavior of the rational functions before making a conjecture.

b. Determine the general formula to identify the vertical asymptote of a rational function in the form $g(x) = \frac{1}{x-c}$. Explain your reasoning.

c. What generalization(s) can you make about the c-value and the domain? The range?

d. What effect does changing the *c*-value have on the function's end behavior? Explain your reasoning.

2. Without using a graphing calculator, determine the domain, range, and vertical and horizontal asymptotes of each rational function.

a.
$$f(x) = \frac{10}{x}$$

b.
$$g(x) = \frac{1}{x+10}$$

Domain:

Domain:

Range:

Range:

Vertical Asymptote:

Vertical Asymptote:

Horizontal Asymptote:

Horizontal Asymptote:

c.
$$j(x) = 10x$$

d.
$$g(x) = \frac{1}{x - 10}$$

Domain:

Domain:

Range:

Range:

Vertical Asymptote:

Vertical Asymptote:

Horizontal Asymptote:

Horizontal Asymptote:

- 3. Write the rational function(s) from the graph, table, or description provided. Explain your reasoning.
 - a.

Function: _____ Explanation:

b. Vertical asymptote at x = 3 and a horizontal asymptote at y = 0.

Function 1: _____

Function 2: _____

Explanation:

c. Domain: All Real Numbers except x = 7Range: All Real Numbers except y = 0

Function 1: _____

Function 2: _____

Explanation:

Consider the functions y = f(x) and g(x) = Af(B(x - C)) + D. Recall that adding a constant D translates f(x) vertically, while adding a constant C translates f(x) horizontally. Multiplying by the constant A dilates f(x) vertically, while multiplying by the constant B dilates f(x)horizontally. Rational functions are transformed in the same manner.

1. The function $f(x) = \frac{1}{x}$ is shown in black on each coordinate plane. Determine whether the second function on each graph is $j(x) = \frac{1}{x+2}$, $m(x) = \frac{2}{x}$, or $k(x) = \frac{1}{x} + 2$. Explain your reasoning.

Function:

Explanation:

Function:

Explanation:

Function:

Explanation:

- **2.** Given $f(x) = \frac{1}{x}$.
 - **a.** Sketch g(x) = f(x) + 5

b. Sketch h(x) = f(x + 5).

Explanation:

Explanation:

3. Write a rational function g(x) that matches the given characteristics. Sketch the function on the coordinate plane.

$$g(x) =$$

$$g(x) =$$

g(x) =

$$g(x) =$$

Be prepared to share your solutions and methods.