PROBLEM

Use Your Head, Dear Henry!

 Determine whether the graph of the rational function has a vertical asymptote, a removable discontinuity, both, or neither. List the discontinuities and justify your reasoning.

a.
$$j(x) = \frac{x+2}{x(x+2)}$$

b.
$$h(x) = \frac{x}{x+5}$$

c.
$$j(x) = \frac{5}{5(x+2)}$$

d.
$$j(x) = \frac{x+2}{x^2-2x-15}$$

2. Write two examples of rational functions with one or more removable discontinuities. Explain your reasoning.

3. Write a unique function that has a vertical asymptote and a removable discontinuity. Explain your reasoning.

Liza

I'm not sure where the asymptotes are, so I'm going to factor the denominator if possible.

$$h(x) = \frac{x - 1}{x^2 + x - 2} = \frac{x - 1}{(x - 1)(x + 2)}$$
$$= \frac{1}{x + 2}.$$

I know there are domain restrictions at x = 1 and x = -2. The common factor (x-1) is in the numerator so $\frac{x-1}{x-1}=1$. Therefore x=1 is a removable discontinuity, while x=-2 is a vertical asymptote. I can quickly sketch $h(x)=\frac{1}{x+2}$ as a horizontal shift of $h(x)=\frac{1}{x}$ two units to the left. I know a discontinuity will exist at $\left(1,\frac{1}{1+2}\right)$, or $\left(1,\frac{1}{3}\right)$. A horizontal asymptote is at y=0and the y-intercept is $\left(0,\frac{1}{2}\right)$.

a. Summarize why x = -2 is a vertical asymptote while x = 1 appears as a "hole" in the graph.

b. Explain why the graph has a horizontal asymptote at y = 0.

5. Sketch each function without the use of a graphing calculator. Identify any restrictions.

a.
$$f(x) = \frac{x+2}{x^2+4x+4}$$

b.
$$g(x) = \frac{x}{x^2 + 3x}$$

c.
$$h(x) = \frac{x}{x^3 - x}$$

d.
$$m(x) = \frac{x^2 + 5x + 6}{x^2 + 5x + 6}$$

e.
$$k(x) = \frac{x^2 - 2x - 15}{x - 5}$$

f.
$$k(x) = \frac{x^3 + x^2 + 2x + 2}{x + 1}$$

