\qquad
Find the center and radius of the circle below. Show all work.

$$
3 x^{2}+3 y^{2}-15 x-30 y-42=0
$$

1. The coefficient on the squared terms is 3 so I have to divide both sides by 3 before I can complete the square.
2. The next thing I needed to do was to move the constant, -14 , so I added 14 to both sides.
3. Then I rearranged my terms so that the x-terms and the y-terms were grouped together.
4. Next I needed to figure out what should be added to the x-terms to make a perfect square trinomial. (I will add the same number on the other side to keep the equation balanced.) I knew that the $-5 x$ came from two identical terms being combined so I divided -5 by 2 which gave me $\frac{-5}{2}$ or -2.5 . I then squared this to determine what I needed to add. $\left(\frac{-5}{2}\right)^{2}=\frac{25}{4}$ or 6.25 .
5. $\frac{3}{3} x^{2}+\frac{3}{3} y^{2}-\frac{15}{3} x-\frac{30}{3} y-\frac{42}{3}=0$
$x^{2}+y^{2}-5 x-10 y-14=0$
6. $x^{2}+y^{2}-5 x-10 y-14+14=0+14$ $x^{2}+y^{2}-5 x-10 y=14$
7. $x^{2}-5 x+y^{2}-10 y=14$
8. $\left(x^{2}-5 x+\ldots\right)+y^{2}-10 y=14+\ldots$ $\left(x^{2}-5 x+6.25\right)+y^{2}-10 y=14+6.25$
9. After that I completed the square on the y-terms to make a perfect square trinomial. In this case I knew two identical terms were combined to give me -10y. I divided -10 by 2 to get -5 . I then squared -5 to determine what I needed to add to both sides. $(-5)^{2}=25$ so I added 25 to both sides of my equation.
10. At this point it was time for me to factor my perfect square trinomials I created and to "clean up" the numbers on the right side of my equation.
11. At last I compared my equation with the standard form equation of a circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Self-Assessment

I correctly reordered the equation to group the x and y values together. Yes No
I correctly isolated the constant on the other side of the equation.
I understood I needed to complete the square in order to convert the equation to standard form.
I correctly completed the square to convert the equation to standard form.
I correctly factored the perfect square trinomials.
I correctly identified the center from my equation in standard form.
I correctly identified the radius from my equation in standard form.

$$
\begin{aligned}
& 5 .\left(x^{2}-5 x+6.25\right)+\left(y^{2}-10 y+\right. \\
& \quad\left(x^{2}-5 x+6.25\right)+\left(y^{2}-10 y+25\right)=14+6.25+ \\
& \hline
\end{aligned}
$$

$$
6 .(x-2.5)^{2}+(y-5)^{2}=45.25
$$

7. The center is $(2.5,5)$ and the radius is $\sqrt{45.25} \approx 6.73$.
8. Factor each as a perfect square:
a) $x^{2}-8 x+16$
b) $x^{2}+18 x+81$
c) $y^{2}+24 y+144$
d) $y^{2}-14 y+49$
e) $x^{2}+5 x+6.25$ or $x^{2}+5 x+\frac{25}{4}$
f) $y^{2}-7 y+\frac{49}{4}$ or $y^{2}-7 y+12.25$
9. Identify the center and radius of each circle:
a) $(x-8)^{2}+(y-7)^{2}=81$

Center: \quad Radius: $\mathrm{r}=$
b) $(x+8)^{2}+(y+7)^{2}=36$

Center: Radius: $\mathrm{r}=$
c) $(x-8)^{2}+(y+7)^{2}=20$

Center: Radius: $\mathrm{r}=$
d) $\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{7}{4}\right)^{2}=\frac{25}{4}$

Center: Radius: $\mathrm{r}=$
4. Now put it all together. Complete the square; write in factored form; and then identify the center and radius of $x^{2}+y^{2}+18 x-9 y-19.75$. Show all steps.

