\qquad
\qquad

Find the volume of each solid. Show all work.

1.	The first thing I had to do was to identify what shapes were combined to form this shape. I saw a triangular prism on top of a rectangular prism. I decided that I needed to find the volume of each then combine them by adding. Volume of Triangular Prism: Area of triangular base \cdot height of prism $=$ $\frac{1}{2}(b$ of triangle $) \cdot(h$ of triangle $) \cdot($ height of prism $)=\frac{1}{2}(12)(9)(4)=216 \mathrm{ft}^{3}$ Volume of Rectangular Prism: Area of rectangular base \cdot height of prism $=$ (length of base) $\cdot($ width of base $) \cdot($ height of prism $)=(16)(4)(6)=384 \mathrm{ft}^{3}$ Combined volume $=$ Vol. of Triangular Prism + Vol. of Rectangular Prism $=$ $216+384=600 \mathrm{ft}^{3}$
2. The inside radius is 1 inch.	The first thing I had to do was to identify what shapes were combined to form this shape. I realized the cardboard roll inside the toilet tissue was a cylinder. Also the actual toilet tissue formed another cylinder around the cardboard roll. In this case I determined that I needed to subtract the volumes of the two cylinders to find the volume of the toilet tissue alone. Volume of the Big Cylinder (toilet tissue and cardboard roll together): Area of circular base \cdot height of prism $=\pi r^{2} h=\pi(3)^{2}(6)=\pi(9)(6)=54 \pi$ in 3 [The diameter of the TP was 6 inches so I took half of that for the radius.] Volume of the Small Cylinder (cardboard roll): Area of circular base \cdot height of prism $=\pi r^{2} h=\pi(1)^{2}(6)=\pi(1)(6)=6 \pi$ in 3 Volume of the toilet tissue alone: Volume of Big Cylinder - Volume of Small Cylinder $=54 \pi-6 \pi=48 \pi \approx 150.79$ in 3
3.	This shape looked like a giant pill to me. I saw the middle as a cylinder and the top and bottom as identical half-spheres. Since the two half-spheres are identical, I thought of them as combining to make a whole sphere. To find the total volume of everything I decided to combine the volume of the cylinder and the volume of the whole sphere by adding. Volume of the Middle Cylinder: Area of circular base - height of cylinder = $\pi r^{2} h=\pi(2)^{2}(6)=\pi(4)(6)=24 \pi \mathrm{~m}^{3}$ Volume of Sphere formed by combining top and bottom: $\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(2)^{3}=\frac{4}{3} \pi(8)=\frac{32}{3} \pi \mathrm{~m}^{3}$ Combined Volume of Everything = Volume of Middle Cylinder + Volume of Sphere formed by top and bottom combined $=24 \pi+\frac{32}{3} \pi=\frac{104}{3} \pi \approx 108.91 \mathrm{~m}^{3}$

