1. Write an equation of a circle with a center at (2, -4) and an area of 81π units squared.

I know the area of a circle is found by $A = \pi r^2$ so I substituted 81π in for the area to solve for r, the radius.	$A = \pi r^2$ $81\pi = \pi r^2$
I divided both sides by π then took the square root of both sides.	$\frac{81\pi}{\pi} = \frac{\pi r^2}{\pi}$
	$81 = r^2$ $\sqrt{81} = \sqrt{r^2}$
This led me to r=9. Now that I have a radius along with a center, I am ready to write an equation.	9 = r
Using the standard form of an equation for a circle, I substituted (2, -4) for the center: (h, k) and 9 for the radius, r.	$(x-h)^{2} + (y-k)^{2} = r^{2}$ (x-2) ² + (y-4) ² = 9 ²
Then I simplified where possible.	$(x-2)^2 + (y+4)^2 = 81$

Practice

- 1. Write an equation of a circle with a center at (-3,1) and an area of 64π units squared.
 - a) Write the equation for area of a circle.
 - b) Substitute into this equation to find the missing radius.
 - c) Write the standard form of a circle with (h,k) as the center and r as the radius.
 - d) Now substitute the center and radius into the standard form equation of a circle. Simplify where needed.

2. Write an equation of a circle with ends of a diameter: (5, 17) and (-3, -5).

The first thing I had to figure out was what I could do with the endpoints of the diameter. I know that the radius is half of the diameter, so I decided that I would find the length of the diameter to help me get the radius. I used the distance formula to find the length.	$(x_1, y_1) = (5, 10)$ $(x_2, y_2) = (-3, -5)$ $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$ $d = \sqrt{(-5 - 10)^2 + (-3 - 5)^2}$ $d = \sqrt{(-15)^2 + (-8)^2}$ $d = \sqrt{225 + 64}$ $d = \sqrt{289}$ $d = 17$
Once I had the diameter was 17 units, all I did to find the radius was divide it by 2. The radius of the circle is 8.5 units.	$d = 2r$ $17 = 2r$ $\frac{17}{2} = \frac{2r}{2}$ $8.5 = r$
Next I realized I didn't have the center of the circle. I had to think about where the center is in relation to the diameter. I realized that the center is the midpoint of the diameter. Once I got the idea, all I had to do was use the midpoint formula to find the middle of the diameter, a.k.a my center.	$(x_{1}, y_{1}) = (5, 10)$ $(x_{2}, y_{2}) = (-3, -5)$ midpoint: $(\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2})$ midpoint: $(\frac{5 + -3}{2}, \frac{10 + -5}{2})$ midpoint: $(\frac{2}{2}, \frac{5}{2})$ midpoint: $(1, 2.5)$
The last thing I needed to do was to substitute the midpoint for the center and use the radius I found.	$(x - h)^{2} + (y - k)^{2} = r^{2}$ (x - 1) ² + (y - 2.5) ² = (8.5) ² (x - 1) ² + (y - 2.5) ² = 72.25

Practice

- 2. Write an equation of a circle with ends of a diameter: (-8, 17) and (-3, 5).
 - a) Write the distance formula.
 - b) Find the length of the diameter using the distance formula.

- c) Identify the radius of the circle now that you have the diameter.
- d) Write the midpoint formula.
- e) Find the center of the circle using the midpoint formula.
- f) Write the standard form of a circle with (h,k) as the center and r as the radius.
- g) Use the radius you found in part c) and the center from part e) to write an equation of a circle in standard form. Simplify where needed.