\qquad

Solutions and explanations for the progress check:

1. $\frac{3 x}{2 x+3}+\frac{x-5}{4 x}=\frac{12 x^{2}}{4 x(2 x+3)}+\frac{2 x^{2}-7 x-15}{4 x(2 x+3)}=\frac{14 x^{2}-7 x-15}{4 x(2 x+3)}$

The two expressions do not have a common denominator. So the first thing I had to do was to figure out the smallest common denominator that $2 x+3$ and $4 x$ could both go into. I realized $2 x+3$ was not factorable. This meant that I could simply multiply the existing denominators together to get the LCD. Given the LCD $=4 \mathrm{x}(2 \mathrm{x}+3)$, I needed to find new equivalent expressions with this denominator. So....

$$
\frac{3 x}{2 x+3} \cdot \frac{4 x}{4 x}=\frac{3 x \cdot 4 x}{4 x(2 x+3)}=\frac{12 x^{2}}{4 x(2 x+3)} \quad \text { and } \quad \frac{x-5}{4 x} \cdot \frac{2 x+3}{2 x+3}=\frac{(x-5)(2 x+3)}{4 x(2 x+3)}=\frac{2 x^{2}+3 x-10 x-15}{4 x(2 x+3)}=\frac{2 x^{2}-7 x-15}{4 x(2 x+3)} .
$$

Once I got them with common denominators, all I had to do was add the numerators together. To check to see if I could reduce this, I had to try to factor the numerator. I could not find any factors using a GCF or the diamond method that would work, so I knew that this answer was as reduced as possible.

Restrictions: $x \neq \frac{-3}{2}, 0$
I determined my restrictions by figuring out what would make the denominator equal to zero. Since we cannot divide by zero, our restrictions are at those x-values. I did this by setting each factor in the LCD equal to zero and solving for x .

$$
\begin{array}{cc}
4 x=0 & 2 x+3=0 \\
x=0 & 2 x=-3 \\
& x=\frac{-3}{2}
\end{array}
$$

2. $\frac{3 x-1}{4 x}-\frac{x-5}{4 x}=\frac{(3 x-1)-(x-5)}{4 x}=\frac{3 x-1-x+5}{4 x}=\frac{2 x+4}{4 x}=\frac{z(x+2)}{z(2 x)}=\frac{x+2}{2 x}$

The denominators were already alike so I could just jump right in and start combining them. Here the problem is subtraction so I used parentheses to help me to remember that the negative sign applies to both of the terms in the second numerator. I distributed the negative by changing positive x to negative x and negative 5 into positive 5. Then I combined like terms. Since the numerator and denominator had all even terms, I knew I needed to reduce. I factored out a two in the top and bottom and then divided to get a reduced answer. Tah Dah.

Restrictions: $x \neq 0$
I determined my restrictions by figuring out what would make the denominator equal to zero. Since we cannot divide by zero, our restrictions are at those x -values. I did this by setting the denominator equal to zero and solving for x .

$$
\begin{gathered}
4 x=0 \\
x=0
\end{gathered}
$$

Additional Practice on back ---->

1. Find the least common denominator for each pair of denominators.
a) $3 x$ and $x-5$
b) $3 x$ and x^{2}
c) $x-5$ and $x^{2}-25$
2. Rewrite each fraction with the new denominator indicated.
a) $\frac{4 x}{3}=\frac{}{3(x+1)}$
b) $\frac{(x-2)}{5 x}=\frac{}{5 x^{2}}$
c) $\frac{x+3}{x}=\frac{}{x(x-1)}$
3. Combine these expressions by filling in the missing parts.
a) $\frac{7}{x-2}+\frac{5 x}{x+1}=\frac{}{(x-2)(x+1)}+\frac{}{(x-2)(x+1)}=\frac{}{(x-2)(x+1)}$
b) $\frac{x+4}{x}-\frac{2 x}{x-3}=\frac{}{x(x-3)}-\frac{}{x(x-3)}=\frac{}{x(x-3)}$
c) $\frac{6 x}{x+2}+\frac{4}{x-2}=\square+\square=$
