\qquad

Solutions and explanations for the progress check:

1. $\frac{6 x-1}{6 x}+\frac{x-3}{3 x^{2}}=\frac{x(6 x-1)}{x(6 x)}+\frac{2(x-3)}{2\left(3 x^{2}\right)}=\frac{6 x^{2}-x+2 x-6}{6 x^{2}}=\frac{6 x^{2}+x-6}{6 x^{2}}$

The expressions in this problem did not have a common denominator, so I knew that was the first thing I needed to find. The first thing I had to do was to figure out the smallest common denominator that 6 x and $3 x^{2}$ could both go into. Both denominators go evenly into $6 x^{2}$, so I knew that was the LCD. Given that the $L C D=6 x^{2}$, I needed to find new equivalent expressions with this denominator, so I multiplied the first fraction by $\frac{x}{x}$ and I multiplied the second fraction by $\frac{2}{2}$ so that the new fractions ended up with the LCD. Then I distributed as necessary and added the numerators together by combining like terms. To check to see if I could reduce this, I had to try to factor the numerator. I could not find any factors using a GCF or the diamond method that would work, so I knew this answer was as reduced as possible.

Restrictions: $x \neq 0 \rightarrow$ I determined my restrictions by figuring out what would make the denominator equal to zero. Since we cannot divide by zero, our restrictions are at those x -values. I did this by setting the LCD equal to zero and solving for x.

$$
\begin{gathered}
6 x^{2}=0 \\
x^{2}=0 \\
x=0
\end{gathered}
$$

2. $\frac{2 x^{2}-6 x}{x-3}-\frac{2 x+8}{2}=\frac{2\left(2 x^{2}-6 x\right)}{2(x-3)}-\frac{(x-3)(2 x+8)}{(x-3)(2)}=\frac{\left(4 x^{2}-12 x\right)-\left(2 x^{2}+2 x-24\right)}{2(x-3)}=\frac{2 x^{2}-14 x+24}{2(x-3)}=\frac{2(x-3)(x-4)}{2(x-3)}=x-4$

Method 1: This problem did not have a common denominator. Since neither denominator is factorable, we can simply multiply the existing denominators together to get the LCD.
Given the LCD $=2(x-3)$, I needed to find new equivalent expressions with this denominator. So I multiplied the first fraction by $\frac{2}{2}$ and I multiplied the second fraction by $\frac{(x-3)}{(x-3)}$ so that the new fractions ended up with the LCD. Then I distributed as necessary and added the numerators together by combining like terms. To check to see if I could reduce this, I had to try to factor the numerator. Using both a GCF and the diamond method, I was able to factor the numerator and use the factors to simplify my final answer.

Restrictions: $x \neq 3 \rightarrow$ I determined my restrictions by figuring out what would make the denominator equal to zero. Since we cannot divide by zero, our restrictions are at those x -values. I did this by setting the factor with a variable in the LCD equal to zero and solving for x . I knew I didn't need to set 2 equal to zero because 2 can never equal zero.

$$
\begin{gathered}
x-3=0 \\
x=3
\end{gathered}
$$

Method 2: I noticed that this problem had a bit of a short-cut that made it easier. Both original fractions can be factored and simplified already using a GCF $\ldots \frac{2 x(x-3)}{(x-3)}-\frac{z(x+4)}{z}=2 x-(x+4)=2 x-x-4=x-4$

Restrictions: $x \neq 3 \rightarrow$ I determined my restrictions by figuring out what would make the denominators equal to zero BEFORE I simplified. Since we cannot divide by zero, our restrictions are at those x-values. I did this by setting the denominator with the variable equal to zero and solving for x . I knew I didn't need to set 2 equal to zero because 2 can never equal zero.

$$
\begin{gathered}
x-3=0 \\
x=3
\end{gathered}
$$

Additional Practice:

1. Find the least common denominator for each pair of denominators.
a) $3 x$ and $3 x-5$
b) $6 x$ and $3 x^{2}$
c) $x-5$ and $x^{2}-25$
2. Rewrite each fraction with the new denominator indicated.
a) $\frac{4 x}{3}=\frac{}{3(x+1)}$
b) $\frac{(x-2)}{5 x}=\frac{}{5 x^{2}}$
c) $\frac{x+3}{x}=\frac{}{x(x-1)}$
3. Combine these expressions by filling in the missing parts. Simplify if possible.
a) $\frac{7}{x-2}+\frac{5 x}{x+1}=\frac{}{(x-2)(x+1)}+\frac{}{(x-2)(x+1)}=\frac{}{(x-2)(x+1)}$
b) $\frac{x+4}{x}-\frac{2 x}{x-3}=\frac{}{x(x-3)}-\frac{}{x(x-3)}=\frac{}{x(x-3)}$
c) $\frac{6 x}{x+2}+\frac{4}{x-2}=\square=\square=\square$
