\qquad
Analysis:
1.

a) What is this question asking us to do?	$10 b$
b) Do we need a common denominator?	
c) Why do we not flip the second fraction?	
d) How did we make $b+6$ a fraction?	$\frac{(b+6)}{1} \cdot \frac{10 b}{2 b+12}$
e) Why do we factor every expression in the problem?	$(b+6) \quad 2 \cdot 5 \cdot b$
f) There are 4 factors in the numerators. List them.	$1 \cdot \frac{2(b+6)}{2(b)}$
g) There are 3 factors in the denominators. List them.	
h) List any factors that divide to equal one.	$\begin{gathered} 5 b \\ b \neq-6 \end{gathered}$
i) Once all the factors have been simplified how do we complete the multiplication problem?	
j) Why are there restrictions on b?	

Follow Up Question: $\frac{15 x}{x-3} \cdot \frac{x^{2}+2 x-15}{5 x+25}$
2.
a) What is this problem asking us to do?
b) Do we need a common denominator?
c) Why do we factor each expression?
d) What restrictions come from the denominator before you multiply by the reciprocal?
e) Dividing by a fraction is the same thing as multiplying by its reciprocal. Explain what this means.
f) There are 3 factors in the numerators. List them.
g) There are 8 factors in the denominators. List them.
h) What does $\frac{(2 x-9)}{(2 x-9)}$ equal? List any other factors that divide to equal one.
i) Once all the factors have been simplified, how did we complete the multiplication problem?
j) There is now one factor in the numerator. List it below.
k) There are now 6 factors in the denominator. List them below.
I) Do any of these factors divide to equal one?

$$
\frac{2 x-9}{4 x^{3}-6 x^{2}} \div \frac{18 x^{2}-81 x}{2 x^{2}-9 x+9}
$$

$$
\frac{2 x-9}{2 x^{2}(2 x-3)} \div \frac{9 x(2 x-9)}{(2 x-3)(x-3)}
$$

$$
\frac{2 x-9}{2 x^{2}(2 x-3)} \cdot \frac{(2 x-3)(x-3)}{9 x(2 x-9)}
$$

Follow Up Question: $\frac{6 x}{x^{2}+2 x-15} \div \frac{2 x^{2}+4 x}{x-3}$

