Name _____

1. Multiply the two rational expressions then state any restrictions on the domain. Simplify completely.

$\frac{x^2+6x-7}{x^2+5x} \cdot \frac{x^2+12x+35}{2x^2+7x-9} = \frac{(x+7)(x+7)}{x(2x+9)} \text{ or } \frac{(x+7)^2}{x(2x+9)}$	Restrictions: $x \neq 0, -5, \frac{-9}{2}, 1$
Step 1: Factor	(x+7)(x-1) $(x+5)(x+7)$
To factor both numerators and denominators, I used	$\frac{1}{x(x+5)}$ $\frac{1}{(2x+9)(x-1)}$
the diamond and GCF.	
Step 2: List Restrictions	x = 0
To get the restrictions, I set each of the factors of the	
denominator equal to zero and solved.	$x + 5 = 0 \rightarrow x = -5$
	$2x + 9 = 0 \rightarrow 2x = -9 \rightarrow x = \frac{-9}{2}$
	Z
	$x - 1 = 0 \rightarrow x = 1$
Step 3: Simplify	
I checked to see if anything would reduce immediately	
and didn't see anything.	
Step 4: Multiply	(x+7)(x-1)(x+5)(x+7)
When multiplying fractions, tops multiply with tops and	x(x+5)(2x+9)(x-1)
bottoms with bottoms.	
Step 5: Simplify Again!	(x+7)(x-1)(x+5)(x+7) - (x+7)(x+7)
The common factor of (x+5) and (x-1) reduced.	$\frac{x(x+5)(2x+9)(x-1)}{x(2x+9)} = \frac{x(2x+9)}{x(2x+9)}$

2. Divide the two rational expressions then state any restrictions on the domain. Simplify completely.

$\frac{(y+4)(y+1)}{y^2-49} \div \frac{(2y-3)(y+4)}{y^2+9y+14} = \frac{(y+1)(y+2)}{(y-7)(2y-3)}$	Restrictions: $y \neq -7, 7, -2, \frac{3}{2}, -4$
Step 1: Factor	(y+4)(y+1), $(2y-3)(y+4)$
To factor both denominators, I used the diamond and	$\frac{1}{(y+7)(y-7)}$ \div $\frac{1}{(y+7)(y+2)}$
difference of squares. The numerators were already in	
factored form.	
Step 2: List Restrictions	$y + 7 = 0 \rightarrow y = -7$
To get the restrictions, I set each of the factors of the	
denominator equal to zero and solved.	$y - 7 = 0 \rightarrow y = 7$
	$y + 2 = 0 \rightarrow y = -2$
Step 3: Simplify	
I checked to see if anything would reduce immediately	
and didn't see anything.	
Step 4: Multiply	$\frac{(y+4)(y+1)}{(y+1)} \cdot \frac{(y+7)(y+2)}{(y+2)} = \frac{(y+4)(y+1)(y+7)(y+2)}{(y+1)(y+2)(y+2)}$
I rewrote the problem as multiplication by using the	(y+7)(y-7) $(2y-3)(y+4)$ $(y+7)(y-7)(2y-3)(y+4)$
reciprocal of the second rational expression.	
When multiplying fractions, tops multiply with tops and	
bottoms with bottoms.	
Step 5: Simplify Again!	$\frac{(y+4)(y+1)(y+7)(y+2)}{(y+1)(y+2)}$
The common factor of (y+4) and (y+7) reduced.	$\frac{(y+7)(y-7)(2y-3)(y+4)}{(y-7)(2y-3)} = \frac{(y-7)(2y-3)}{(y-7)(2y-3)}$

Additional Practice on back \rightarrow

Additional Practice:

- 1. Find the restrictions for each denominator.
- a) $\frac{(m+3)(m-5)}{(2m+1)(m-7)}$ $m \neq$
- b) $\frac{(9x-1)(9x+1)}{x(x+3)(9x+1)}$ $x \neq$
- 2. Multiply the expressions together. Leave your answers in factored form. Reduce where possible.
- a) $\frac{(z-1)(3z+2)}{z(z+1)} \cdot \frac{(z-1)(z+1)}{(3z-2)(3z+2)}$

b)
$$\frac{w^2 + 5w + 4}{w^2 - 16} \cdot \frac{w^2 - 3w - 4}{w^2 - 1}$$

- 3. Write each division problem as multiplication then multiply. Leave answers in reduced factored form.
- a) $\frac{x-1}{x+2} \div \frac{1}{x+2}$

What restrictions are there for the values of x?

b) $\frac{(r-3)(2r+5)}{(r-2)(r+2)} \div \frac{(r-3)(r+3)}{(2r+5)(r+2)}$

What restrictions are there for the values of r?

c) $\frac{v^2 - 6v + 8}{v + 1} \div \frac{v^2 - 4}{v^2 - 1}$

What restrictions are there for the values of v?