\qquad

1. Multiply the two rational expressions then state any restrictions on the domain. Simplify completely.

$$
\frac{x^{2}+6 x-7}{x^{2}+5 x} \cdot \frac{x^{2}+12 x+35}{2 x^{2}+7 x-9}=\frac{(x+7)(x+7)}{x(2 x+9)} \text { or } \frac{(x+7)^{2}}{x(2 x+9)} \quad \text { Restrictions: } x \neq 0,-5, \frac{-9}{2}, 1
$$

Step 1: Factor To factor both numerators and denominators, I used the diamond and GCF.	$\frac{(x+7)(x-1)}{x(x+5)} \cdot \frac{(x+5)(x+7)}{(2 x+9)(x-1)}$
Step 2: List Restrictions To get the restrictions, I set each of the factors of the denominator equal to zero and solved.	$x=0$
	$x+5=0 \rightarrow x=-5$
Step 3: Simplify I checked to see if anything would reduce immediately and didn't see anything.	$2 x+9=0 \rightarrow 2 x=-9 \rightarrow x=\frac{-9}{2}$
Step 4: Multiply When multiplying fractions, tops multiply with tops and bottoms with bottoms.	$x-1=0 \rightarrow x=1$
Step 5: Simplify Again! The common factor of (x+5) and (x-1) reduced.	$\frac{(x+7)(x-1)(x+5)(x+7)}{x(x+5)(2 x+9)(x-1)}$

2. Divide the two rational expressions then state any restrictions on the domain. Simplify completely.

$$
\frac{(y+4)(y+1)}{y^{2}-49} \div \frac{(2 y-3)(y+4)}{y^{2}+9 y+14}=\frac{(y+1)(y+2)}{(y-7)(2 y-3)} \quad \text { Restrictions: } y \neq-7,7,-2, \frac{3}{2},-4
$$

Step 1: Factor To factor both denominators, I used the diamond and difference of squares. The numerators were already in factored form.	$\frac{(y+4)(y+1)}{(y+7)(y-7)} \div \frac{(2 y-3)(y+4)}{(y+7)(y+2)}$
Step 2: List Restrictions To get the restrictions, I set each of the factors of the denominator equal to zero and solved.	$y+7=0 \rightarrow y=-7$
Step 3: Simplify I checked to see if anything would reduce immediately and didn't see anything.	$y-7=0 \rightarrow y=7$
Step 4: Multiply I rewrote the problem as multiplication by using the reciprocal of the second rational expression. When multiplying fractions, tops multiply with tops and bottoms with bottoms.	$\frac{(y+4)(y+1)}{(y+7)(y-7)} \cdot \frac{(y+7)(y+2)}{(2 y-3)(y+4)}=\frac{(y+4)(y+1)(y+7)(y+2)}{(y+7)(y-7)(2 y-3)(y+4)}$
Step 5: Simplify Again! The common factor of $(y+4)$ and (y+7) reduced.	$\frac{(y+4)(y+1)(y+7)(y+2)}{(y+7)(y-7)(2 y-3)(y+4)}=\frac{(y+1)(y+2)}{(y-7)(2 y-3)}$

Additional Practice:

1. Find the restrictions for each denominator.
a) $\frac{(m+3)(m-5)}{(2 m+1)(m-7)} \quad m \neq$
b) $\frac{(9 x-1)(9 x+1)}{x(x+3)(9 x+1)} \quad x \neq$
2. Multiply the expressions together. Leave your answers in factored form. Reduce where possible.
a) $\frac{(z-1)(3 z+2)}{z(z+1)} \cdot \frac{(z-1)(z+1)}{(3 z-2)(3 z+2)}$
b) $\frac{w^{2}+5 w+4}{w^{2}-16} \cdot \frac{w^{2}-3 w-4}{w^{2}-1}$
3. Write each division problem as multiplication then multiply. Leave answers in reduced factored form.
a) $\frac{x-1}{x+2} \div \frac{1}{x+2}$

What restrictions are there for the values of x ?
b) $\frac{(r-3)(2 r+5)}{(r-2)(r+2)} \div \frac{(r-3)(r+3)}{(2 r+5)(r+2)}$

What restrictions are there for the values of r ?
c) $\frac{v^{2}-6 v+8}{v+1} \div \frac{v^{2}-4}{v^{2}-1}$

What restrictions are there for the values of v ?

