Properties of Parallelograms

Name:______A#____

1. Construct a proof for each property of parallelograms.

Statement	Diagram	Proc	of
a) Given: ABCD is a parallelogram. Prove: Opposite sides are congruent.			
b)	$A \longrightarrow B$	Statement	Reason
Given: ABCD is a			Given
parallelogram.	A A	$\overline{AB} \parallel \overline{DC}$	
			Alternate Interior Angle
Prove: Opposite			Theorem
angles are		$\overline{AD} \parallel \overline{BC}$	
congruent.		$\angle ADB \cong \angle CBD$	
			Reflexive Property
			Angle Side Angle Congruence
			Postulate
		$\angle DCB \cong \angle BAD$ (a pair of	
		opposite angles)	
		$m \angle ADB + m \angle CDB = m \angle ADC$	
		$m\angle ABD + m\angle CBD = m\angle CBA$	
		$\angle ADB \simeq \angle CBD$	
		$\frac{1}{m \angle CDB} = m \angle ABD$	
		$m \angle ADB = m \angle CBD$	
		$m \angle CDB + m \angle ADB = m \angle CBA$	
		$m \angle CBA = m \angle ADC$	
		$\angle CBA \cong \angle ADC$ (a pair of	
		opposite angles)	

c)	Label the parallelogram			
Given: ABCD is a	below using the given.	Statement	Reason	
parallelogram.		ABCD is a parallelogram	Given	
		$\angle ABC$ and $\angle BCD$ are	Same Side Interior Angle	
Prove:		supplementary	Theorem	
Consecutive		$\angle BCD$ and $\angle CDA$ are		
angles are		supplementary		
supplementary.		$\angle CDA$ and $\angle DAB$ are		
		supplementary		
		$\angle DAB$ and $\angle ABC$ are		
		supplementary		
		For the proof above there is a k	ey step missing in the reasoning.	
		Identify what is missing and wh know.	ere it should go. Explain how you	
d) Given: ABCD is a parallelogram.		In this proof you are allowed to already proven.	use any of the 3 properties you've	ž
Prove: The diagonals bisect each other.				

2. In order to disprove a conjecture, all that is needed is a single counterexample (an example where the conjecture is not true). Draw a counterexample for each of the following.

a. The diagonals of a parallelogram are congruent.	b. The diagonals of a parallelogram are perpendicular.