\qquad

1. Construct a proof for each property of parallelograms.

Statement	Diagram	Proof		
a) Given: $A B C D$ is a parallelogram. Prove: Opposite sides are congruent.				
b) Given: $A B C D$ is a parallelogram. Prove: Opposite angles are congruent.		Statement	Reason	
			Given	
		$\overline{A B} \\| \overline{D C}$		
			Alternate Interior Angle Theorem	
		$\overline{\overline{A D}} \\| \overline{B C}$		
		$\angle A D B \cong \angle C B D$		
			Reflexive Property	
			Angle Side Angle Congruence Postulate	
		$\angle D C B \cong \angle B A D$ (a pair of opposite angles)		
		$\begin{aligned} & m \angle A D B+m \angle C D B=m \angle A D C \\ & m \angle A B D+m \angle C B D=m \angle C B A \end{aligned}$		
		$\begin{aligned} & \angle C D B \cong \angle A B D \\ & \angle A D B \cong \angle C B D \end{aligned}$		
		$\begin{aligned} & m \angle C D B=m \angle A B D \\ & m \angle A D B=m \angle C B D \end{aligned}$		
		$m \angle C D B+m \angle A D B=m \angle C B A$		
		$m \angle C B A=m \angle A D C$		
		$\angle C B A \cong \angle A D C$ (a pair of opposite angles)		

2. In order to disprove a conjecture, all that is needed is a single counterexample (an example where the conjecture is not true). Draw a counterexample for each of the following.

a. The diagonals of a parallelogram are congruent.	b. The diagonals of a parallelogram are perpendicular.

