You can show that a quadrilateral is a parallelogram by using any of the conditions listed below.

Conditions for Parallelograms

- Both pairs of opposite sides are parallel (definition).
- One pair of opposite sides is parallel and congruent.
- Both pairs of opposite sides are congruent.
- Both pairs of opposite angles are congruent.
- The diagonals bisect each other.
- One angle is supplementary to both its consecutive angles.
- 1. Determine whether each quadrilateral must be a parallelogram. Justify your answer.

a.

b

c.

d.

e.

f.

2. Let's show why a condition can prove we have a parallelogram, by definition.

Given: \overline{JL} and \overline{KM} bisect each other

Prove: LKJM is a parallelogram

Statements Reasons

3. Given: ABCD is a parallelogram $\overline{AE} \cong \overline{CF}$

Prove: EBFD is a parallelogram

Statements
$1.\overline{AE} \cong \overline{CF}$, ABCD is a parallelogram
2 . D 4 D

$$3. \overline{AD} \cong \underline{\hspace{1cm}}$$

5.
$$\overline{ED} \cong$$

6. $\overline{AB} \cong$ ______

$$7. m\overline{AB} = \underline{\hspace{1cm}}$$

$$8. \, m\overline{AE} = \underline{\hspace{1cm}}$$

9. ____+
$$m\overline{EB}$$
 = ____, ___+ = $m\overline{CD}$

Statements

$$11. m\overline{EB} = \underline{}$$

12.
$$\overline{EB} \cong \underline{\hspace{1cm}}$$

4. Given: \overline{DB} bisects \overline{AC} $\angle 1 \cong \angle 2$

Prove: ABCD is a parallelogram

Reasons