Solutions and explanations for the progress check:

1. $\frac{4}{3 x+3}=\frac{12}{x^{2}-1}$	The first thing I needed to do was to factor both denominators so that I could find restrictions and so I could look for the least common denominator.
$\begin{gathered} 3 x+3=3(x+1) \\ x^{2}-1=(x+1)(x-1) \end{gathered}$	The first denominator had a common factor of 3 so I factored that from both terms. The second denominator was the difference of two squares which always factors as $a^{2}-b^{2}=(a+b)(a-$ b)
Restrictions: $x \neq-1,1$	I found the restrictions by setting each factor in the denominator equal to zero then solving.
LCD: $3(x+1)(x-1)$	I found the LCD by starting with the denominator $3(x+1)$ and then looking at the factors of the second denominator. I saw that I already had the $(x+1)$ so all I needed to include that wasn't already there was the factor ($\mathrm{x}-1$).
$\frac{4 \cdot 3(x+1)(x-1)}{3(x+1)}=\frac{12 \cdot 3(x+1)(x-1)}{(x-1)(x+1)}$	I multiplied each numerator by the LCD so that I could divide to get rid of fractions. I reduced on the left by dividing the 3 and $(x+1)$. I reduced on the right by dividing $(x+1)(x-1)$.
$4(x-1)=12 \cdot 3$	To complete the solving, I distributed the 4 through the parentheses.
$4 x-4=36$	I added 4 to both sides.
$4 x=40$	I divided both sides by 4.
$x=10$	This is not an extraneous solution. That is, it is not a false answer given by the steps I used. The only restrictions on x are $x \neq 1$ and $x \neq-1$.

2. $\frac{4}{x}+\frac{3}{4}=1$	In this problem I noticed that the denominators were relatively prime. That is, the denominator of x and the denominator of			
had no common factors. This made it easy for				
me to find the LCD because all I had to do				
was multiply them together.		$	$	LCD: $4 \cdot x=4 x$
:---	:---			
Restrictions: $x \neq 0$				
denominators. In this problem the only				
dossible restriction comes from the				
denominator with x.				

1. Factor each expression.
a) $x^{2}-9$
b) $6 x^{2}+18 x$
c) $x^{2}+6 x+9$
2. Use your work from above to find the restrictions on the domain of the following rational expressions.
a) $\frac{x}{x^{2}-9}$
b) $\frac{x-3}{6 x^{2}+18 x}$
c) $\frac{-1}{x^{2}+6 x+9}$
3. Use your work from above to find the LCD for the following rational expressions.

$$
\frac{x}{x^{2}-9} \text { and } \frac{x-3}{6 x^{2}+18 x} \text { and } \frac{-1}{x^{2}+6 x+9}
$$

LCD:
4. Solve the following rational equations. State your restrictions and the LCD/LCM. Check for extraneous solutions.
a) $\frac{1}{x}+\frac{1}{x^{2}}=2$
b) $\frac{2 x-1}{x+1}=\frac{2 x-2}{x}$
5. Maria solved an equation with rational expressions in math class. Her partner told her that when she checked the answer key there was no solution. Below is Maria's work. Explain to Maria why there is no solution for this rational equation.

$$
\begin{gathered}
\frac{2}{x+3}+\frac{6}{x^{2}+3 x}=\frac{1}{x} \\
\frac{2}{x+3}+\frac{6}{x(x+3)}=\frac{1}{x} \\
\frac{2 \cdot x(x+3)}{x+3}+\frac{6 \cdot x(x+3)}{x(x+3)}=\frac{1 \cdot x(x+3)}{x} \\
2 x+6=x+3 \\
2 x=x-3 \\
x=-3
\end{gathered}
$$

