\qquad

Solve the following rational equations. Make sure to check for extraneous solutions.

1. $\frac{9}{3 x^{2}+7 x-6}=\frac{12}{x^{2}-9}$	The answers is: $x=\frac{-1}{9}$.
To solve this equation, the first thing you must do is to factor the denominators.	$\begin{gathered} 3 x^{2}+7 x-6=(3 x-2)(x+3) \\ \text { and } x^{2}-9=(x+3)(x-3) \end{gathered}$
Once the denominators are factored, you should establish restrictions to help you determine if there are any extraneous solutions.	$\begin{gathered} 3 x-2 \neq 0 \text { so } x \neq \frac{2}{3} ; x+3 \neq 0 \text { so } x \neq-3 ; \\ x-3 \neq 0 \text { so } x \neq 3 \end{gathered}$
After determining the restrictions, you should attempt to reduce if possible. Here there is nothing that divides.	$\frac{9}{(3 x-2)(x+3)}=\frac{12}{(x+3)(x-3)}$
Now you must determine the least common denominator and multiply both sides of the equation by this expression. LCD/LCM $=(3 x-2)(x+3)(x-3)$	$\frac{9 \cdot(3 x-2)(x+3)(x-3)}{(3 x-2)(x+3)}=\frac{12 \cdot(3 x-2)(x+3)(x-3)}{(x+3)(x-3)}$
Reduce by dividing common factors in the numerator and denominator.	$\frac{9 \cdot(3 x-2)(x+3)(x-3)}{(3 x-2)(x+3)}=\frac{12 \cdot(3 x-2)(x+3)(x-3)}{(x+3)(x-3)}$
Now you must distribute on both sides to simplify what remains.	$9 x-27=36 x-24$
Finish by isolating x on one side. Compare your answer to the restrictions to see if you must disregard a potential solution because it is extraneous. In this case the answer is no so this is the end.	$\begin{gathered} -27=27 x-24 \\ -3=27 x \\ -\frac{3}{27}=x \\ -\frac{1}{9}=x \end{gathered}$

Follow Up for Question 1:

Solve using the above method. You must list your restrictions and check for extraneous solutions and show your solutions work by explicitly checking each.

$$
\frac{6}{2 x^{2}+2 x}=\frac{8}{x^{2}-4 x-5}
$$

Factor each denominator here:

Solve here:

Write your LCD/LCM here:
Establish restrictions here:

2. $\frac{2}{x^{2}-4 x}+\frac{3}{x}=1$	The answers are $x=5$ or $x=2$.
To solve this equation, the first thing you must do is to factor the denominators.	$x^{2}-4 x=x(x-4)$ and x is just x.
Once the denominators are factored, you should establish restrictions to help you determine if there are any extraneous solutions.	$x \neq 0$ and $x-4 \neq 0$ so $x \neq 4$
After determining the restrictions, you should attempt to reduce if possible. Here there is nothing that divides.	$\frac{2}{x(x-4)}+\frac{3}{x}=1$
Now you must determine the least common denominator and multiply both sides of the equation by this expression. LCD/LCM $=x(x-4)$	$\frac{2 \cdot x(x-4)}{x(x-4)}+\frac{3 \cdot x(x-4)}{x}=1 \cdot x(x-4)$
Reduce by dividing common factors in the numerator and denominator.	$\frac{2 \cdot x(x-4)}{x(x-4)}+\frac{3 \cdot x(x-4)}{x}=1 \cdot x(x-4)$
Now you must distribute on both sides to simplify what remains.	$\begin{array}{r} 2+3(x-4)=x(x-4) \\ 2+3 x-12=x^{2}-4 x \end{array}$
Finish by setting one side equal to 0 since this is quadratic. Factor (if possible) and set each factor equal to 0 . If you cannot factor, use the quadratic formula to solve. Compare your answer to the restrictions to see if you must disregard a potential solution because it is extraneous. In this case there is no conflict so this is the end.	$\begin{gathered} 3 x-10=x^{2}-4 x \\ -10=x^{2}-7 x \\ 0=x^{2}-7 x+10 \\ 0=(x-5)(x-2) \\ x-5=0 \text { or } x-2=0 \\ x=5 \text { or } x=2 \end{gathered}$

Follow Up for Question 2:

Solve using the above method. You must list your restrictions and check against them and show your solutions work by writing out the check.

$$
\frac{x}{x+1}+\frac{2}{x-5}=\frac{30}{x^{2}-4 x-5}
$$

Write your LCD here:

Solve here:
Establish your restrictions here:

