1. Given: O is the circumcenter of ΔXYZ

Prove: $\overline{OZ} \cong \overline{OX} \cong \overline{OY}$

2. Given: P is the incenter of $\triangle ABC$

Prove: $\overline{PZ} \cong \overline{PX} \cong \overline{PY}$

3. Given: O is the centroid of ΔABC Prove: $m\overline{OC}=2(m\overline{OF}),\ m\overline{OB}=2(m\overline{OE})$ and $m\overline{OA}=2(m\overline{OD})$

B D C	
Statements	Reasons
1. O is the centroid of ΔABC	1. Given
2. E is the midpoint of \overline{AC} and F is the midpoint of \overline{AB}	2.
3. \overline{EF} is a midsegment of $\triangle ABC$	3. Definition of Midsegment
4. $\overline{EF} \parallel \overline{BC}$ and $m\overline{BC} = 2(m\overline{EF})$	4. Triangle Midsegment Theorem
5. $\angle FEB \cong \angle EBC$ and $\angle EFC \cong \angle FCB$	5.
6. Δ <i>FOE</i> ~Δ <i>BOC</i>	6. AA Similarity
$7. \frac{BC}{EF} = \frac{OC}{OF} = \frac{OB}{OE}$	7. Definition of Similar Triangles
8. $m\overline{OB} = 2(m\overline{OE}), \overline{OC} = 2(m\overline{OF})$	8.
9. D is the midpoint of \overline{BC}	9.
10.	10.
11.	11.
12.	12.
13.	13.
14.	14.