1) Given PQRS is a parallelogram, find the measure of angle $\angle P S R$. Explain how you know.

2)

If a quadrilateral is a parallelogram, then	Correct?
Each diagonal divides the parallelogram into two congruent triangles	T or F
Opposite angles are congruent	T or F
Consecutive angles are supplementary	T or F
The diagonals are congruent	T or F
The diagonals bisect each other	T or F
The diagonals are perpendicular	

3) Use the word bank to fill in the following blanks. You will not use all of the words and you may use words more than once.

Word Bank:

Incenter	Circumcenter	Centroid	Vertex
Side	Gravity	Medians	Perpendicular Bisectors
Circumscribed	Inscribed	Angle Bisectors	Triangle

a)

The angle bisectors of a triangle intersect at the \qquad . This point is equidistant to each \qquad of the triangle, and is the center of $a(n)$ \qquad circle.
b) Perpendicular bisectors meet at the \qquad . This point is equidistant to each
\qquad of the triangle, and is the center of a \qquad circle.
c) The point of concurrency for the medians of a triangle is called the \qquad . It is the center of
\qquad for a triangle. It divides the \qquad into two segments whose lengths are in a ratio of 2:1.
4) Name the type of center of the triangle shown in the diagrams below. Explain how you know.

Name:

Explanation:
b)

Name:

Explanation:

Name:

Explanation:
5) Point T is the incenter of $\triangle P Q R$. If $U R=2 y$, find y. Show your work or explain your reasoning.

6) Point G is the centroid of $\triangle A B C$.

7) Point G is the circumcenter of $\triangle A B C$.

If $G E=2 x-15$, find x . Show your work

Show your work or explain your reasoning.
\qquad or explain your reasoning.

8) RSTU is a parallelogram. $R O=y+3 ; S U=4 x ; T O=3 y-7 ; U O=x+5$. Find x and y . Show your work or explain your reasoning.

9) Write the formula for each:
a) Area of a circle = \qquad b) Circumference of a Circle $=$ \qquad
10)
a) Ratio for finding Sector Area:
b) Ratio for finding Length of an Arc:
c) Ratio for a Central Angle in Degrees:
d) Ratio for a Central Angle in Radians:
11) a) Find the measure of angle a and arc b.
b) Find the measure of angle a and arc b.

$\mathrm{a}=$
$b=$
 $\mathrm{a}=$
$b=$
12) When assembling a chair like that shown here, the legs of the chair, $\overline{D B}$ and $\overline{A C}$, are connected at their midpoints. (E is the midpoint of $\overline{A C}$ and $\overline{D B}$.) Prove that $\triangle A B E \cong \triangle C D E$.

13) a) Find the radius.

c) $\overline{E D}$ and $\overline{F D}$ are tangent to circle C. Find the value of x.

b) $\overline{P \bar{A}}$ and $\overline{P B}$ are tangents to circle 0 . Find the measure of the intercepted arc indicated by x .

d) $m \angle R S T=95$ and $m \widehat{S T U}=220$. Find
$m \angle S R T=$ \qquad
$m \angle R U T=$ \qquad
$m \widehat{T U R}=$ \qquad
$m \widehat{U T S}=$ \qquad
14) Use the word bank to name the term that best describes the notation below.

1. $\widehat{A B}$ \qquad
2. $\angle A I E$ \qquad
3. $\angle A C E$ \qquad
4. $\overline{H G}$ \qquad
5. $\overline{B E}$ \qquad
6. $\widehat{B D A}$ \qquad
7. $\overline{B D}$ \qquad
8. $\angle D B E$ \qquad
9. $\overleftrightarrow{A G}$ \qquad
15) Triangle $A B C$ is circumscribed about the circle. Find the perimeter of triangle ABC if $a=8 \mathrm{~cm}, b=9 \mathrm{~cm}$, and $c=18 \mathrm{~cm}$.

16)

The radius of Circle $C_{1}=26$ in and the radius of circle $C_{2}=10 \mathrm{in}$. The distance between the centers of the two circles is 43 in . What is the horizontal length between the two points of tangency?
17) a)

Area $=$ \qquad
b)

Length of the arc $D E=18.32 \mathrm{~cm}$
Area $=$ \qquad
18) a) Find the radius
b) Find the length of the major arc.

c)

The radar beam sent out by an aeroplane reaches a distance of 120 kilometres and covers an angle of 150°.

Calculate the area covered by the beam.
c) Find the central angle in radians.

