\qquad

1. Given $A B C D$ is a parallelogram, prove opposite sides are congruent.

Statement	Reason		
$A B C D$ is a parallelogram	Given		
$\overline{A B} \\| \overline{D C}$ and $\overline{A D} \\| \overline{B C}$			
	Alternate Interior Angle Theorem		
	Reflexive Property		
	Alternate Interior Angle Theorem		
$\Delta A D C \cong \Delta C B A$			
$\overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$			

2. If you are proving two triangles are congruent. What are the 5 reasons you could give to support your statement?
3. What must you establish in your proof prior to ever using CPCTC as a reason in your proof?

Proving Properties of Parallelograms Progress Check (F2)
Name: \qquad

1. Given $A B C D$ is a parallelogram, prove opposite sides are congruent.

Statement	Reason		
ABCD is a parallelogram	Given		
$\overline{A \bar{B} \\| \overline{D C} \text { and } \overline{A D} \\| \overline{B C}}$Alternate Interior Angle Theorem			
	Reflexive Property		
	Alternate Interior Angle Theorem		
$\overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$			
$\Delta A D C \cong \Delta C B A$			

2. If you are proving two triangles are congruent. What are the 5 reasons you could give to support your statement?
3. What must you establish in your proof prior to ever using CPCTC as a reason in your proof?
