| supplement | itary When | le interior angl
lines are pa | rallel poss | | | |--|---|---|---|--|--| | f a quadrilateral i | is a parallelogram, the | Correct? | | | | | ach diagonal divides the parallelogram into two congruent triangles | | | | | | | Opposite angles a | re congruent | T or F | | | | | Consecutive angle | es are supplementary | (T)or F | | | | | The diagonals are | congruent | T or F | | | | | - | | | (T) or F | | | | The diagonals bisect each other The diagonals are perpendicular | | | | | | | rne diagonais are | perpendicular | | T or (F') | | | | Incenter
Sides | Circumcenter
Gravity | Centroid
Medians | Vertices Perpendicular Bisectors | | | | Vord Bank: | Circumsontes | Controld | Varticos | | | | | ··· | | | | | | nucs | Gravity | Liviculans | FEEDERBURGING DISPUTORS | | | | Circumscribed | Inscribed | Angle Bisectors | Triangle | | | | | Inscribed s of a triangle intersec | , | Triangle | | | | € | s of a triangle intersec | t at the | Triangle This points | | | | he angle bisector | s of a triangle intersed | , | Triangle Triangle This po | | | | The angle bisectors equidistant to each | s of a triangle intersect
on of the <u>VS/O</u> circle. | et at the of the triangle, a | Triangle Triangle This point is the center of a(n) | | | | ne angle bisectors quidistant to each | s of a triangle intersed
to of the circle.
ectors meet at the | es of the triangle, a | Triangle This point is equidistant to ea | | | | The angle bisectors equidistant to each ASCA Perpendicular bise | s of a triangle intersed
to of the circle.
ectors meet at the | et at the of the triangle, a | Triangle This point is equidistant to ea | | | | he angle bisectors quidistant to each lascrib Perpendicular bise | s of a triangle intersed
n of the circle.
ectors meet at the
of the triangle, and is | of the triangle, a Circum center of a(n) Circum | Triangle Triangle This point is equidistant to eau circle. | | | | The angle bisectors equidistant to each Perpendicular bise VerticeS The point of concu | s of a triangle intersect
n of the circle.
ectors meet at the
of the triangle, and is | of at the of the triangle, a of the triangle, a circumcenter of a(n) _ | Triangle . This point is equidistant to ea . It is the center | | | | he angle bisectors quidistant to each lascrib erpendicular bise lertices he point of concu | s of a triangle intersect
n of the circle.
ectors meet at the
of the triangle, and is | of at the of the triangle, a of the triangle, a circumcenter of a(n) _ | Triangle Triangle This point is equidistant to eau circle. | | | | The angle bisectors equidistant to each Perpendicular bise VerticeS The point of concu gravity 2:1. | s of a triangle intersect
the Side
of the circle.
ectors meet at the
of the triangle, and is
urrency for the median
for a triangle. It di | of at the of the triangle, a of the triangle, a circumcenter of a(n) _ | Triangle Triangle This point is equidistant to each circle. Certroid It is the center of a two segments whose lengths are in a rational circle. | | | | The angle bisectors equidistant to each Perpendicular bise VerticeS The point of concu gravity 2:1. | s of a triangle intersect
the Side
of the circle.
ectors meet at the
of the triangle, and is
urrency for the median
for a triangle. It di | of the triangle, a Circum cender s the center of a(n) Circum ans of a triangle is called the ivides theinto | Triangle Triangle This point is equidistant to each circle. Certroid It is the center of a two segments whose lengths are in a rational circle. | | | | The angle bisectors equidistant to each Perpendicular bise VerhiceS The point of concu gravity 2:1. Name the type of | s of a triangle intersect
the Side
of the circle.
ectors meet at the
of the triangle, and is
urrency for the median
for a triangle. It di | of the triangle, a Circumcente s the center of a(n) Circum ns of a triangle is called the ivides themedianSinto | Triangle Triangle This point is equidistant to each circle. Certroid It is the center of two segments whose lengths are in a ration. Explain how you know. | | | | he angle bisectors quidistant to each lesson become lesson become lesson become lesson become lesson become gravity lesson become lesson become gravity lesson become less | s of a triangle intersect
the Side
of the circle.
ectors meet at the
of the triangle, and is
urrency for the median
for a triangle. It di | of the triangle, a Circumcente s the center of a(n) Circum ns of a triangle is called the ivides themedianSinto | Triangle Triangle This point is equidistant to each circle. Certroid It is the center of a two segments whose lengths are in a ration. Explain how you know. | | | | he angle bisectors quidistant to each lesson be rependicular bise Vertices The point of concu gravity 2:1. Name the type of | s of a triangle intersect
the Side
of the circle.
ectors meet at the
of the triangle, and is
urrency for the median
for a triangle. It di | of the triangle, a Circumcente s the center of a(n) Circum ns of a triangle is called the ivides themedianSinto | Triangle Triangle This point is equidistant to each circle. Certroid. It is the center of a ration. It is the center of a ration. This point is equidistant to each circle. | | | | he angle bisectors quidistant to each lesson be rependicular bise Vertices The point of concu gravity 2:1. Name the type of | s of a triangle intersect of the circle. ectors meet at the of the triangle, and is urrency for the median for a triangle. It discenter of the triangle | of the triangle, a Circum cender s the center of an Circum ivides the medians into shown in the diagrams below b) | Triangle Triangle This point is equidistant to each circle. Certroid It is the center of two segments whose lengths are in a ration. Explain how you know. | | | 5) Point T is the incenter of ΔPQR . Find the measure of UR. Show your work or explain your reasoning. $$x^{2} + 15^{2} = 26^{2}$$ $x^{2} + 225 = 676$ $-225 - 325$ $x^{2} = 451$ 6) Point G is the centroid of $\triangle ABC$. if AD=8, AG=10, BE=19, and AC=16, find the perimeter of the triangle. Show your work or explain your reasoning. f) $$2(19) = 38$$ $4(8) = 32$ 9 70 7) Point O is the circumcenter of ΔMNP . Find the measure of SO. Show your work or explain your reasoning. $22^{2} + \chi^{2} = 26.8^{2}$ $484 + \chi^{2} = 718.24$ $\sqrt{\chi^{2}} = \sqrt{334.24}$ $\chi = (15.3)$ - 8) Fill in the blanks below to make the statement true. - a) A tangent line to a circle is <u>perpendicular</u> to the radius drawn to the point of tangency. - b) The measure of a(n) <u>Central</u> angle is equal to the measure of its intercepted arc. - c) If two arcs of a circle are congruent then their corresponding central angle measures are <u>congruent</u>. - d) A radian is an angle unit equal to an angle at the center of the circle whose arc is equal in length to the radius. - - A(n) <u>inscribe</u> angle is half the measure of its intercepted arc. - g) A circumscribed angle is 180 degrees minus the measure of its <u>Intercepted arc</u>. | ' 9) | Write the formula for each: | a) | Area of a circle = | Tr2 | | |-------------|-----------------------------|----|--------------------|-----|--| | | | | | ~~ | | - b) Circumference of a circle= d/(r Complete the Ratio statements for each of the following: - a) Ratio for finding Sector Area: - b) Ratio for finding Length of an Arc: - Ratio for a Central Angle in Degrees: central angle - d) Ratio for a Central Angle in Radians: <u>central angle</u> - b) Find the measure of angle a and arc b. $8 \times 10^{-1} \text{ c}$ $8 \times 10^{-1} \text{ c}$ a) Find the measure of angle a and arc b. When assembling a chair like that shown here, the legs of the chair, \overline{DB} and \overline{AC} , are connected at their midpoints. (E is the midpoint of \overline{AC} and \overline{DB} .) | | Prove that $\triangle ABE \cong \triangle CDE$. | | | |----|--|---------------------------|--| | | 1. E is the midpoint of Alan | 1. Given d D B | | | | 2. AE = EC | 2. Definition of Midpoint | | | | BE = ED | | | | , | 3. AE = EC | Definition of | | | `. | <u>BE</u> ≅ ED | Congruence | | | | 4. ∠ AEB ≅ ∠ CEB | 4. Vertical Angle Theorem | | 5. △ABE = ACDE SAS b) \overline{PA} and \overline{PB} are tangents to circle O. Find the measure of the intercepted arc indicated by x. c) \overline{ED} and \overline{FD} are tangent to circle C. Find the value of x. - d) $m \angle RST = 95$ and $m\widehat{STU} = 220$. Find $m \angle SRU = 110$ $m \angle RUT = 85$ $m \angle UTS = _$ $m\widehat{T}\widehat{U}\overline{R} =$ $mR\widehat{S}T =$ 25+x=64 Use the word bank to name the term that best 14) describes the notation below. 1. AB Minor arc 2. LAIE Circumscribed angle 3. LACE <u>Central</u> angle 4. HG radius 5. BE diameter 6. BDA Major 7. BD ___chor 8. LDBE inscribed angle Triangle ABC is circumscribed about the circle. Find the perimeter of triangle ABC if a = 8 cm, b= 9 cm, and c = 18 cm. ## Word Bank: | Radius | Central Angle | Major Arc | |-----------------|---------------------|-----------| | Minor Arc | Tangent Line | Diameter | | Inscribed Angle | Circumscribed Angle | Chord | 16) The radius of Circle $C_1 = 26$ in and the radius of circle $C_2 = 10$ in. The distance between the centers of the two circles is 43 in. What is the horizontal length between the two points of tangency? $$16^{2} + x^{2} = 43^{2}$$ $256 + x^{2} = 1849$ $\sqrt{x^{2}} = \sqrt{1593}$ $x = (39.91in)$ 17) a) 7 = 18.32 10 = 18.32 $\frac{1}{9} = \frac{\times}{1789}$ $\frac{1}{1789}$ $\frac{1}{1}$ 360 - 18,32 360 - 27/r The radar beam sent out by an aeroplane reaches a distance of 121 kilometres and covers an angle of 150°. $\frac{150}{360} = \frac{15}{36} = \frac{5}{5}$ 120 km Find the radius Find the length of the major arc. 240 = 2 10 10 Calculate the area covered by the beam. c) Find the central angle in radians 60007