Suppose Point A is a seat on a Ferris wheel with a 12-meter radius positioned on an x - y -coordinate system like your unit circle. You are on a seat to the right of the vertical axis halfway to the highest point of the ride. Find the x - and y -coordinates of your seat after the wheel has rotated counterclockwise through an angle of $\frac{2 \pi}{3}$ radians.

Find the amplitude of the cosine function.

Find the period of the cosine function.

How many radians is 80° ?

Write the equation for a sine function with a period of 4π, and amplitude of 3 and a midline at

$$
y=0
$$

Find the period of the sine function.

How many degrees is $\frac{2 \pi}{45}$?

What are the coordinates of the point where the central angle of $\frac{11 \pi}{6}$ intersects a circle of radius

12?

What are the coordinates of the point where the central angle of $\frac{\pi}{3}$ intersects a circle of radius 12 ?

The midline of the cosine function is

$$
y=?
$$

Write the equation for a sine function with a period of $\frac{\pi}{2}$, and amplitude of 2 and a midline at y

$$
=-3 .
$$

Find the period of the sine function.

$$
y=\sin \left(\frac{1}{4} x\right)
$$

Answers:

$y=2 \sin (4 x)-3$	$(6 \sqrt{3},-6)$	π
$(-6,6 \sqrt{3})$	2	$\frac{4 \pi}{9}$
$(6,6 \sqrt{3})$	8π	8
$\frac{2 \pi}{3}$	3	$y=3 \sin \left(\frac{1}{2} x\right)$

