Find the measures of the indicated sides and angles. Simplify any radicals.

1. BC = _____

Hint: Use The

Pythagorean

Theorem

Explain why you can't count the squares of a diagonal line to find the distance between points A and B.

Find the hypotenuse of each of the isosceles right triangles.

An isosceles right triangle is also known as a 45-45-90 triangle. Find the lengths of the legs of the 45-45-90 triangles.

7.

Isosceles Right (45-45-90) **Triangle Shortcut**

hypotenuse = leg × _____

leg = hypotenuse ÷ _____

10.

Use the shortcut to find the missing side of the triangles below.

30-60-90 Right Triangle

- 12. ΔDEF is an _____ triangle.
- 13. Draw an altitude from point E to \overline{DF} . Be sure to mark your right angle.
- 14. Label the place where your altitude meets \overline{DF} point C.
- 15. Find the m∠CEF. _____
- 16. Find the length of \overline{CF} .
- 17. Use the Pythagorean Theorem to find EC.

Find the missing sides and angles.

18.

19.

20.

A 30-60-90 right triangle has two legs and a hypotenuse. The leg opposite the 30° angle is called the **short leg**. The leg opposite the 60° angle is called the **long leg**.

Hypotenuse = short leg × _____

Long leg = short leg × _____

Short leg = hypotenuse ÷ _____

Short leg = long leg ÷ _____

Find the missing sides.

21.

22.

23.

