Find the measures of the indicated sides and angles. Simplify any radicals. 1. BC = _____ **Hint:** Use The Pythagorean **Theorem** Explain why you can't count the squares of a diagonal line to find the distance between points A and B. Find the hypotenuse of each of the isosceles right triangles. An isosceles right triangle is also known as a 45-45-90 triangle. Find the lengths of the legs of the 45-45-90 triangles. 7. Isosceles Right (45-45-90) **Triangle Shortcut** hypotenuse = leg × _____ leg = hypotenuse ÷ _____ 10. Use the shortcut to find the missing side of the triangles below. ## 30-60-90 Right Triangle - 12. ΔDEF is an _____ triangle. - 13. Draw an altitude from point E to \overline{DF} . Be sure to mark your right angle. - 14. Label the place where your altitude meets \overline{DF} point C. - 15. Find the m∠CEF. _____ - 16. Find the length of \overline{CF} . - 17. Use the Pythagorean Theorem to find EC. ## Find the missing sides and angles. 18. 19. 20. A 30-60-90 right triangle has two legs and a hypotenuse. The leg opposite the 30° angle is called the **short leg**. The leg opposite the 60° angle is called the **long leg**. Hypotenuse = short leg × _____ Long leg = short leg × _____ Short leg = hypotenuse ÷ _____ Short leg = long leg ÷ _____ ## Find the missing sides. 21. 22. 23.