\qquad

Answers with explanations.

1. $112^{\circ}=\frac{28 \pi}{45}$ radians

To convert to radian measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{112^{\circ}}{360^{\circ}}=\frac{x}{2 \pi}$.
I then cross multiplied to get: $112 \cdot 2 \pi=360 \cdot x$.
I simplified to: $224 \pi=360 x$.
Then divided both sides by 360 : $\frac{224 \pi}{360}=\frac{360 x}{360}$.
Finally I reduced to get: $\frac{28 \pi}{45}=x$.
3. $\frac{\pi}{5}=36^{\circ}$

To convert to degree measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{x}{360^{\circ}}=\frac{\frac{\pi}{5}}{2 \pi}$.
I then cross multiplied to get: $x \cdot 2 \pi=\frac{\pi}{5} \cdot 360$
I simplified to: $2 \pi x=\frac{360 \pi}{5} \rightarrow 2 \pi x=72 \pi$.
Then divided both sides by $2 \pi: \frac{2 \pi x}{2 \pi}=\frac{72 \pi}{2 \pi}$.
Finally I reduced to get: $x=36^{\circ}$.

Additional Practice on Back \rightarrow

PCFU: Converting between Degrees and Radians H1-H2
Answers with explanations.

1. $112^{\circ}=\frac{28 \pi}{45}$ radians

To convert to radian measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{112^{\circ}}{360^{\circ}}=\frac{x}{2 \pi}$.
I then cross multiplied to get: $112 \cdot 2 \pi=360 \cdot x$.
I simplified to: $224 \pi=360 x$.
Then divided both sides by 360: $\frac{224 \pi}{360}=\frac{360 x}{360}$.
Finally I reduced to get: $\frac{28 \pi}{45}=x$.
3. $\frac{\pi}{5}=36^{\circ}$

To convert to degree measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{x}{360^{\circ}}=\frac{\frac{\pi}{5}}{2 \pi}$.
I then cross multiplied to get: $x \cdot 2 \pi=\frac{\pi}{5} \cdot 360$
I simplified to: $2 \pi x=\frac{360 \pi}{5} \rightarrow 2 \pi x=72 \pi$.
Then divided both sides by 2π : $\frac{2 \pi x}{2 \pi}=\frac{72 \pi}{2 \pi}$.
Finally I reduced to get: $x=36^{\circ}$.
2. $12^{\circ}=\frac{\pi}{15}$ radians

To convert to radian measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{12^{\circ}}{360^{\circ}}=\frac{x}{2 \pi}$.
I then cross multiplied to get: $12 \cdot 2 \pi=360 \cdot x$.
I simplified to: $24 \pi=360 x$.
Then divided both sides by $360: \frac{24 \pi}{360}=\frac{360 x}{360}$.
Finally I reduced to get: $\frac{\pi}{15}=x$.
4. $\frac{3 \pi}{8}=67.5^{\circ}$

To convert to degree measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{x}{360^{\circ}}=\frac{\frac{3 \pi}{8}}{2 \pi}$.
I then cross multiplied to get: $x \cdot 2 \pi=\frac{3 \pi}{8} \cdot 360$
I simplified to: $2 \pi x=\frac{1080 \pi}{8} \rightarrow 2 \pi x=135 \pi$.
Then divided both sides by 2π : $\frac{2 \pi x}{2 \pi}=\frac{135 \pi}{2 \pi}$.
Finally I reduced to get: $x=67.5^{\circ}$.

Name: \qquad
2. $12^{\circ}=\frac{\pi}{15}$ radians

To convert to radian measure, I set up a proportion: $\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{12^{\circ}}{360^{\circ}}=\frac{x}{2 \pi}$.
I then cross multiplied to get: $12 \cdot 2 \pi=360 \cdot x$.
I simplified to: $24 \pi=360 x$.
Then divided both sides by $360: \frac{24 \pi}{360}=\frac{360 x}{360}$.
Finally I reduced to get: $\frac{\pi}{15}=x$.
4. $\frac{3 \pi}{8}=67.5^{\circ}$

To convert to degree measure, I set up a proportion:
$\frac{\text { degree measure }}{360^{\circ}}=\frac{\text { radian measure }}{2 \pi} \rightarrow \frac{x}{360^{\circ}}=\frac{\frac{3 \pi}{8}}{2 \pi}$.
I then cross multiplied to get: $x \cdot 2 \pi=\frac{3 \pi}{8} \cdot 360$
I simplified to: $2 \pi x=\frac{1080 \pi}{8} \rightarrow 2 \pi x=135 \pi$.
Then divided both sides by 2π : $\frac{2 \pi x}{2 \pi}=\frac{135 \pi}{2 \pi}$.
Finally I reduced to get: $x=67.5^{\circ}$.

For all conversions from degrees to radians or radians to degrees you will use the following:

$$
\frac{\text { angle measure in degrees }}{360^{\circ}}=\frac{\text { angle measure in radians }}{2 \pi}
$$

Write this out each time you use it. Show your work to get credit. Check your answers with those provided in the box below.

1) Convert 135° to radians
2) Convert $\frac{7 \pi}{4}$ to degrees.

For all conversions from degrees to radians or radians to degrees you will use the following:

$$
\frac{\text { angle measure in degrees }}{360^{\circ}}=\frac{\text { angle measure in radians }}{2 \pi}
$$

Write this out each time you use it. Show your work to get credit. Check your answers with those provided in the box below.

1) Convert 135° to radians
2) Convert $\frac{7 \pi}{4}$ to degrees.
