PCFU: Converting between Degrees and Radians H1-H2

Name:

Answers with explanations.

- 1. $112^{\circ} = \frac{28\pi}{45}$ radians To convert to radian measure, I set up a proportion: $\frac{degree\ measure}{360^{\circ}} = \frac{radian\ measure}{2\pi} \rightarrow \frac{112^{\circ}}{360^{\circ}} = \frac{x}{2\pi}$. I then cross multiplied to get: $112 \cdot 2\pi = 360 \cdot x$. I simplified to: $224\pi = 360x$. Then divided both sides by $360: \frac{224\pi}{360} = \frac{360x}{360}$. Finally I reduced to get: $\frac{28\pi}{45} = x$.
- 3. $\frac{\pi}{5} = 36^{\circ}$

To convert to degree measure, I set up a proportion: $\frac{degree \ measure}{360^{\circ}} = \frac{radian \ measure}{2\pi} \rightarrow \frac{x}{360^{\circ}} = \frac{\frac{\pi}{5}}{2\pi}.$ I then cross multiplied to get: $x \cdot 2\pi = \frac{\pi}{5} \cdot 360$ I simplified to: $2\pi x = \frac{360\pi}{5} \rightarrow 2\pi x = 72\pi.$ Then divided both sides by 2π : $\frac{2\pi x}{2\pi} = \frac{72\pi}{2\pi}.$ Finally I reduced to get: $x = 36^{\circ}.$

Additional Practice on Back \rightarrow

PCFU: Converting between Degrees and Radians H1-H2

Answers with explanations.

- 1. $112^{\circ} = \frac{28\pi}{45}$ radians To convert to radian measure, I set up a proportion: $\frac{degree\ measure}{360^{\circ}} = \frac{radian\ measure}{2\pi} \rightarrow \frac{112^{\circ}}{360^{\circ}} = \frac{x}{2\pi}$. I then cross multiplied to get: $112 \cdot 2\pi = 360 \cdot x$. I simplified to: $224\pi = 360x$. Then divided both sides by $360: \frac{224\pi}{360} = \frac{360x}{360}$. Finally I reduced to get: $\frac{28\pi}{45} = x$.
- 3. $\frac{\pi}{5} = 36^{\circ}$

To convert to degree measure, I set up a proportion: $\frac{degree \ measure}{360^{\circ}} = \frac{radian \ measure}{2\pi} \rightarrow \frac{x}{360^{\circ}} = \frac{\frac{\pi}{5}}{2\pi}.$ I then cross multiplied to get: $x \cdot 2\pi = \frac{\pi}{5} \cdot 360$ I simplified to: $2\pi x = \frac{360\pi}{5} \rightarrow 2\pi x = 72\pi.$ Then divided both sides by 2π : $\frac{2\pi x}{2\pi} = \frac{72\pi}{2\pi}.$ Finally I reduced to get: $x = 36^{\circ}.$

Additional Practice on Back
$$\rightarrow$$

2. $12^\circ = \frac{\pi}{15}$ radians

To convert to radian measure, I set up a proportion: $\frac{degree\ measure}{360^{\circ}} = \frac{radian\ measure}{2\pi} \rightarrow \frac{12^{\circ}}{360^{\circ}} = \frac{x}{2\pi}.$ I then cross multiplied to get: $12 \cdot 2\pi = 360 \cdot x.$ I simplified to: $24\pi = 360x.$ Then divided both sides by $360: \frac{24\pi}{360} = \frac{360x}{360}.$ Finally I reduced to get: $\frac{\pi}{15} = x.$

4. $\frac{3\pi}{8} = 67.5^{\circ}$

To convert to degree measure, I set up a proportion: $\frac{degree \ measure}{360^{\circ}} = \frac{radian \ measure}{2\pi} \rightarrow \frac{x}{360^{\circ}} = \frac{\frac{3\pi}{8}}{2\pi}.$ I then cross multiplied to get: $x \cdot 2\pi = \frac{3\pi}{8} \cdot 360$ I simplified to: $2\pi x = \frac{1080\pi}{8} \rightarrow 2\pi x = 135\pi.$ Then divided both sides by $2\pi: \frac{2\pi x}{2\pi} = \frac{135\pi}{2\pi}.$ Finally I reduced to get: $x = 67.5^{\circ}.$

Name:

2. $12^{\circ} = \frac{\pi}{15}$ radians To convert to radian measure, I set up a proportion: $\frac{degree\ measure}{360^{\circ}} = \frac{radian\ measure}{2\pi} \rightarrow \frac{12^{\circ}}{360^{\circ}} = \frac{x}{2\pi}$. I then cross multiplied to get: $12 \cdot 2\pi = 360 \cdot x$. I simplified to: $24\pi = 360x$. Then divided both sides by $360: \frac{24\pi}{360} = \frac{360x}{360}$. Finally I reduced to get: $\frac{\pi}{15} = x$.

4. $\frac{3\pi}{8} = 67.5^{\circ}$

To convert to degree measure, I set up a proportion:

 $\frac{degree\ measure}{360^{\circ}} = \frac{radian\ measure}{2\pi} \rightarrow \frac{x}{360^{\circ}} = \frac{\frac{3\pi}{8}}{2\pi}.$ I then cross multiplied to get: $x \cdot 2\pi = \frac{\frac{3\pi}{8}}{\frac{3\pi}{8}} \cdot 360$ I simplified to: $2\pi x = \frac{1080\pi}{8} \rightarrow 2\pi x = 135\pi.$ Then divided both sides by 2π : $\frac{2\pi x}{2\pi} = \frac{135\pi}{2\pi}.$ Finally I reduced to get: $x = 67.5^{\circ}.$ For all conversions from degrees to radians or radians to degrees you will use the following:

 $\frac{angle\ measure\ in\ degrees}{360^\circ} = \frac{angle\ measure\ in\ radians}{2\pi}$

Write this out each time you use it. Show your work to get credit. Check your answers with those provided in the box below.1) Convert 135° to radians2) Convert $\frac{7\pi}{4}$ to degrees.

°215 (2 satisfiest 2) 315°

For all conversions from degrees to radians or radians to degrees you will use the following:

 $\frac{angle\ measure\ in\ degrees}{360^\circ} = \frac{angle\ measure\ in\ radians}{2\pi}$

Write this out each time you use it. Show your work to get credit. Check your answers with those provided in the box below.1) Convert 135° to radians2) Convert $\frac{7\pi}{4}$ to degrees.

2) $\frac{\pi \epsilon}{2}$ radians 2)315°