Geometry Review	Name A#
1. Given <i>EFGH</i> is a square with a diagonal drawn from $\angle E$ to $\angle G$. Complete the proof that $\Delta EFG \cong \Delta GHE$. a. Is $\overline{EF} \cong \overline{GH}$ and $\overline{FG} \cong \overline{HE}$ true? Why?	2. What is the measure of a central angle with an arc measure of 45°?
b. Is $\overline{EG} \cong \overline{EG}$ true? Why?	
c. Is $\Delta EFG \cong \Delta GHE$ true? Why?	
3. What is the measure of the arc with an inscribed angle of 18°?	4. What is the measure of the angle formed between a tangent and the diameter of a circle?
5. Given an arc length of 20 ft and $\theta = 90^{\circ}$, find the radius of the circle.	6. Given a radius with length 4.5 inches and $\theta = \frac{\pi}{6}$, find the area of the sector.
7. What is the equation of the circle with center at (4, -3) and radius of 2? a. $(x - 4)^2 + (y + 3)^2 = 2$ b. $(x - 4)^2 + (y + 3)^2 = 4$ c. $(x + 4)^2 + (y - 3)^2 = 4$ d. $(x - 4)^2 - (y - 3)^2 = 4$	 8. What are the center and radius of the circle described by the equation x² + y² - 18x + 12y + 68 = 0? a. Center (6, -9); radius 7 b. Center (-9, 6); radius 7 c. Center (-6, 9); radius 7 d. Center (9, -6); radius 7

	9. The diameter of a circle is 8 centimeters. A central angle of the circle intercepts an arc of 12 centimeters. What is the radian measure of the angle?	10. Carla put her pencil on the outer edge of a graph of the unit circle at the point (1, 0). She moved her pencil tip through an angle of $\frac{7\pi}{4}$ radians counterclockwise along the edge of the unit circle. At what point on the unit circle did Carla's pencil stop?
1	 1. Given that the two lines in the figure below are parallel, find each of the following values: a) x b) m∠5 c) m∠3 d) m∠2 	 12. A glass maker is crafting a vase by creating the cone below and cutting the top section off. What will be the volume of trh resulting base after the small end of the cone with a radius of 2.5 cm and height of 6 cm is removed? 2.5 form form form form form form form form
1	3. In the diagram of $\triangle OMP$ and $\triangle OQN$, $\angle M \cong \angle Q$ and $\overline{MO} \cong \overline{QO}$. Based on the diagram, write a proof showing $\overline{MN} \cong \overline{QP}$.	